SSM AUDIO PRODUCTS AUDO
HANDBOOK

INSHDE: Latest SSM Product Data 19 Application Notes

AUDIO HANDBOOK VOLUME 1

Introduction 4
Definitions 5
Product Data Sheets
Voltage-Controlled Amplifiers
SSM-2013 Voltage-Controlled Amplifier 7
SSM-2014 Voltage-Controlled Amplifier/OVCE 12
SSM-2018 Voltage-Controlled Amplifier/OVCE* New 23
SSM-2024 Quad Current-Controlled Amplifier 24
SSM-2120 Dynamic Range Processor 30
SSM-2122 Dual VCA 30
Surround Sound Decoder
SSM-2125 Dolby Surround Pro-Logic Matrix Decoder*. New 42
Audio Preamplifier
SSM-2015 Low-Noise Microphone Preamplifier 44
SSM-2016 Ultra-Low Noise Differential Audio Preamplifier 49
SSM-2017 Self-Contained Audio Preamplifier* New 57
Audio Switches
SSM-2402 Dual Audio Analog Switch New 58
SSM-2412 Fast Dual Audio Analog Switch New 58
Line Driver/Receiver
SSM-2141 High Common-Mode Rejection Differential Line Receiver New 68
SSM-2142 . $\because \quad$ Balanced Line Driver* New 75
Audio Operational Amplifiers
SSM-2131 Low Distortion, High-Speed Operational Amplifier New 76
SSM-2132 Dual Audio Operational Amplifier* New 88
SSM-2134 Low-Noise Audio Operational Amplifier 89
SSM-2139 Dual Low-Noise Operational Amplifier New 95
Matched Transistors
SSM-2210 Dual Matched NPN Transistors New 104
SSM-2220 Dual Matched PNP Transistors New 115
Level Detection System
SSM-2110 RM5-to-DC Converter 123
Voltage-Controlled Filters
SSM-2044 Voltage-Controlled Filter/Oscillator 134
SSM-2045 Voltage-Controlled Signal Processor 140
SSM-2047 Voltage-Controlled Filter with Triple VCAs 147
Log Conversion Amplifier
SSM-2100 Log/ Antilog Amplifer 151
Multiplexed Sample-and-Hold
SSM-2300 8-Channel Multiplexed Sample-and-Hold 160

[^0]Application Notes - New 1989 and 1990 Publication PMI Products
AN-111 A Balanced Summing Amplifier.SSM-2015, OP-41167
AN-112 A Balanced Input High-Level Amplifier SSM-2015 169
AN-113 An Unbalanced, Virtual Ground Summing Amplifier SSM-2134 171
AN-114 A High-Performance Transformer-Coupled Microphone Preamplifier SSM-2015, 2016 172
AN-115 Balanced Low-Noise Microphone Preamplifier Design SSM-2015 174
AN-116 AGC Amplifier Design with Adjustable Attack and Release Control SSM-2013 176
AN-121 High-Performance Stereo Routing Switcher SSM-2402, 2015, 2134 178
AN-122. A Balanced Mute Circuit for Audio Mixing Consoles SSM-2402, 2122, 2134 181
AN-123 A Constant Power "PAN" Control Circuit for Microphone Audio MixingSSM-2134 183
AN-124 Three High-Accuracy RIAA/IEC MC and MM Phono Preamplifiers SSM-2015, 2134 185
AN-125 A Two-Channel Dynamic Filter Noise Reduction System SSM-2120, 2134 190
AN-127 An Unbalanced Mute Circuit for Audio Mixing Channels SSM-2402, 2134 192
AN-128 A Two-Channel Noise Gate SSM-2120, 2134 194
AN-129 A Precision Sum and Difference (Audio Matrix) Circuit SSM-2015, 2134, OP-215 196
AN-130 A Two-Band Audio Compressor/Limiter SSM-2120, 2134 197
AN-131 A Two-Channel VCA Level (Volume) Control Circuit SSM-2122, 2134, OP-215 200
AN-133 A High-Performanče Compandor for Wireless Audio Systems SSM-2120, 2134 202
AN-134 An Automatic Microphone Mixer SSM-2015, 2120, 2134 206
AN-135 The Morgan Compressor/Limiter SSM-2014, 2110, MAT-04, SSM-2210 209
Packaging and Ordering Information 216
Other PMI Products for Audio Applications 217
Digital-to-Analog Converters 217
Digital-to-Analog Converter Selection Guide 219
Operational Amplifiers 221
Highlights from PMI's 1990 Data Book 223

INTRODUCTION

We are proud to present Volume One of PMI's Audio Handbook. It represents a significant advance over previous SSM literature and is the result of extensive effort from numerous PMI employees. Inside you will find 26 data sheets and 19 application notes. The data sheets for the original 14 products have been completely rewritten and reformatted to be more concise and useful. Full data on seven new products released since the last SSM Product Guide is included, as is advance information on five new products which will be introduced soon.
The application notes were written to provide pragmatic solutions to real-world audio design problems. All were written by experienced systems designers, not IC designers. One note, the Morgan Compressor/Limiter (AN-135), was prepared by industry-renowned designer Michael Morgan who has spent many years developing state-of-the-art dynamic range processors.
Precision Monolithics, Inc., through its SSM Audio
Products group, is committed to the ongoing development of high-performance ICs for applications in all ranges of audio equipment, including professional, consumer, automiotive, medical, military, and industrial. Our goal is to provide integrated solutions resulting in higher perforgiance, lower cost, improved quality, and hence greates overall value.

Precision Monolithics Inc.

DEFINITIONS

Class A VCA - The standing (quiescent) current in the gain core transistors is the maximum output current the VCA can deliver without resulting in clipping or a large increase in distortion.
Class AB VCA - The gain core standing current is significantly less than the full output current.

Control Feedthrough, or Control

Breakthrough - The amount of a control signal reaching the output of a VCA with no signal applied. Control feedthrough can be measured in terms of current, voltage, or dB .
Control Rejection - A ratio of an output signal to control voltage.
Decibels (db) - The decibel is a ratio of two quantities, and therefore is a relative rather than an absolute measurement. The mathematical formulas used to calculate dB are as follows:
$d B_{\text {watts }}=10 \log \left(P_{1} / P_{0}\right)$
$d B_{\text {volts }}=20 \log \left(V_{1} / N_{0}\right)$
$d B_{\text {watis }}$ provides a ratio for two power levels, P_{1} and $\mathrm{P}_{0} . \mathrm{dB}_{\text {volts }}$ is the calculation for two voltage levels, V_{1} and V_{0}.
In some instances, however, dBs are expressed relative to a given reference level. Audio circuits may refer to one or more of the following relative dB types:
dBm : 0 dB is referenced to 1 mW
$\mathrm{dBu}: \quad 0 \mathrm{dBu}$ is referenced to $0.775 \mathrm{~V}_{\mathrm{RMS}}$
dBV : $\quad 0 \mathrm{dBV}$ is referenced to $1 \mathrm{~V}_{\mathrm{RMS}}$
dBW : 0 dBW is referenced to 1 W
dB SPL: for sound pressure level $0 \mathrm{~dB} \mathrm{SPL}=0.0002$ dynes $/ \mathrm{cm}^{2}$ (threshold of hearing)

Dynamic Range - The magnitude, measured in dB , between clipping and the electronic noise floor of a device.

Dynamic Range Processor - A system whereby effective dynamic range is increased (such as noise reduction), or decreased (as with a compressor/limiter).
Equivalent Input Noise (EIN) - A measurement, in dBm, of noise at the output of a device with amplifier gain subtracted. The measurement is performed with a resistor connected across the input (usually 150Ω), the value of which must be specified. The theoretical minimum noise of a 150Ω resistor with 20 Hz to 20 kHz bandwidth at $15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$ is -131.9 dBm .
Frequency Response - Indicates input-to-output frequency versus amplitude performance. A typical frequency response specification might be 20 Hz to $40 \mathrm{kHz}, \pm 3 \mathrm{~dB}$. This means that amplitude will not vary more than 3dB at any frequency between 20 Hz and 40 kHz .
Headroom - The difference, measured in dB, between clip level and the average signal level.
Input Noise Voltage, Density (e_{n}) - The RMS noise voltage in a 1 Hz band centered on a specified frequency.

Intermodulation Distortion (SMPTE) - A peak voltage measurement of non-harmonic output frequencies caused by an electronic circuit, using 60 Hz and 7 kHz tones with a $4: 1$ ratio.
Noise Corner - The frequency below which the noise floor of an amplifier increases with input(s) shorted to ground.
Noise Figure - Related to EIN, the noise figure expresses in dB the incremental noise of a circuit over the theoretical minimum. For example, a circuit using a 150Ω source impedance with EIN of -129.5 dB has a noise figure of 2.4 dB .
Nominal, or Average, Signal Level - The average electronic line level of program material passing through an electronic device, measured in dB with respect to a given reference level.

Pink Noise - Filtered thermal noise to provide flat frequency response of 0 dB over a 20 Hz to 20 kHz range. Equal noise power per octave.
Resonance - A sympathetic electrical vibration caused by reactive (capacitive or inductive) elements which causes peaking in the frequency response of a system.
Signal-to-Noise Ratio (SNR) - The difference, measured in dB, between the average signal level and the electronic noise floor. A statement of headroom should normally accompany the SNR.
Total Harmonic Distortion - A measurement, expressed as a percentage, of the RMS harmonic distortion components added to an audio signal by an electronic circuit.
White Noise - Unaltered thermal noise. Equal noise power per hertz over the frequency band.

Precision Monolithics Inc.

FEATURES

- 0.01\% THD Typ
- 0.03\% IMD Typ
- 800kHz Unlty-Gain Bandwidth
- 12dB Headroom (at Rating)
- 40dB Gain Capability
- 106dB Dynamic Range (17.5 Bits)
- Full Class A Performance
- Mute and Exponential Controls

APPLICATIONS

- Compressor/LImiters
- Noise Gates
- Automatic Gain Control
- Noise Reduction Systems
- Telephone LIne Interfaces

ORDERING INFORMATION

PACKAGE	OPERATING TEMPERATURE PLASTIC $14-$ PIN
SSM2013P	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

The SSM-2013 is a high-performance monolithic Class A Voltage Controlled Amplifier. Operating with current mode inputs
and outputs, the SSM-2013 is ideal when logarithmic control of gain is needed. The output current gain or attenuation is controlled by applying a control voltage to the EXPO pin 9. The amplifier offers wide bandwidth, easy signal summing and minimum external component count.

The SSM-2013 can operate with more than 12 dB of headroom at the rated specifications or be configured for gains as high as 40 dB . Inherently low control feedthrough and and harmonic distortion make trimming unnecessary for most applications. An extremely wide control range of 110 dB regulated by a flexible antilogarithmic control port make this VCA a versatile analog building block. With 800 kHz bandwidth and $94 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio at 0.01% THD, the SSM-2013 provides a useful solution for a maristy of signal conditioning, needs in applications ranging from professional audio to analog instrumentation, process controls and more.

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC

Supply Voltage \qquad 36 V or $\pm 18 \mathrm{~V}$ Junction Temperature \qquad $+150^{\circ} \mathrm{C}$ Operating Temperature Range \qquad $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Maximum Current into any Pin \qquad 10 mA

PACKAGE TYPE	$\theta_{\text {IA }}$ (NOTE 1)	θ_{IC}	UNITS
14-Pin Plástic.DIP (P)	90	47	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE:

1. θ_{j} is specified for worst case mounting conditions, li.e., θ_{JA} Is specified for device in socket for P-DIP package.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	SSM-2013 TYP	MAX	UNTS
Positive Supply Voltage		+12	+15	+18	v
Negative Supply Voltage (Note 1)		-7.6	-8.2	-8.7	
Postive Supply Current		5.4	8.7	10.4	mA
Negative Supply Current		6.0	8.7	11.0	ma
Negative Supply Bias Resistor (Pin 7 to Pin 8)		675	900	1170	Ω
Expo Input Blas	$\mathrm{V}_{\theta}=\mathrm{GND}($ (Note 2)	-	1.0	3.2	$\mu \mathrm{A}$
Expo Conirol Sensilivity	at Pln 9	-	-10	-	$\mathrm{mV} / \mathrm{dB}$
Mute Off (Logic Low)		0.0	-	1.0	v
Mute On (Logic High)		3.0	5	15	V
Mute Attenuation	(@) $\mathbf{1 k H z}, \mathrm{V}_{\text {PIN } 10}=+5 \mathrm{~V}$)	-	-90	-	dB
Current Gain	$V_{\theta}=$ GND	0.90	1.0	1.1	
Current Output Offset	$V_{\mathrm{e}}=\mathrm{GND}$	-7.5	0	+7.5	$\mu \mathrm{A}$
Output Leakage	$V_{\theta}=+800 \mathrm{mV}$	-50	0	+50	$\sim_{\text {nA }}$
Max Avallable Output Current	$V_{\theta}=$ GND, 15k (pin 3 to- V)	± 1.2	-	-	ma
Current Bandwldth (3dB)	$V_{\theta}=$ GND	-	800	-	kHz
Slgnal Feedthrough	$V_{\theta}=+1.2 \mathrm{~V}$	-	-90	-	dB
Slgnal to Nolse (20Hz - 20kHz) (Notes 3, 4)	$V_{\theta}=$ GND, No Slgnal	-	-94	92.5	dB
THD (Untrimmed) (Note 4)	$V_{\theta}=\mathrm{GND}^{\text {, }} \mathrm{I}_{\mathrm{IN}}=600 \mu \mathrm{~A}_{\mathrm{p}-\mathrm{p}}$	-	0.01	0.06	\%
THD (Trimmed)	$V_{\theta}=$ GND, $I_{\text {IN }}=600 \mu \mathrm{~A}_{\mathrm{p}-\mathrm{P}}$	-	0.004	-	\%
IMD (Untrimmed) SMPTE (Note 4)	$V_{\theta}=G N D, I_{N}=600 \mu A_{p-p}$	-	0.03	0.12	\%
IMD (Trimmed) SMPTE	$\mathrm{V}_{\mathrm{B}}=\mathrm{GND}, \mathrm{I}_{\mathrm{I}}=600 \mu \mathrm{~A}_{\mathrm{P}-\mathrm{P}}$	-	0.012	-	\%

NOTES:

1. Measured at pin 8, pin $7=-15 \mathrm{~V}$.

Specifications subject to change; consult latest data sheet.
2. V_{θ} is vollage on pin $9\left(V_{\text {EXPO }}\right)$.
3. Referred to a $400 \mu A_{p-p}$ input level.
4. Parameter is sample tested to max limit ($0.4 \% \mathrm{AQL}$).

FIGURE 1: Typical Connection

THEORY OF OPERATION

The SSM-2013 is a current input/current output device. It is essentially a current mode amplifier where the output current/ input current transfer function is controlled by a control voltage applied at the EXPO pin (9). Current mode operation allows easy adaptation to various voltage ranges at the input, output and control port. As configured, it offers large attenuation plus moderate gain capability.
CHOOSING $\mathrm{R}_{\text {iN }}$
Most applications use the typical connection of Figure 1. In this configuration, The SSM-2013 will accomodate input currents up to 1.2 mA without significant distortion or clipping. To set the maximum operating current to 1.2 mA , select R_{IN} to equal Vpeak/1.2mA.

As an example: For a 7 V -p nominal signal level ($\pm 3.5 \mathrm{~V}$), select $R_{1 N}=12 k \Omega$. Here, $I_{\mathbb{N}}$ operating is: $3.5 \mathrm{~V} / 12 \mathrm{k}=300 \mu \mathrm{~A}$, which yields 12 dB headroom from 1.2mA. In some appliçations such as broadcast equipment, 16-24dB headroom may be required.
Selecting $\pm 300 \mu \mathrm{~A}$ nominal operating current yields 12 dB headroom. Figure 2 shows the IMD/THD (Intermodulation and Total Harmonic Distortion) characteristics of the SSM-2013 at this $300 \mu \mathrm{~A}$ or $600 \mu \mathrm{~A}$ peak-to-peak operating level.
Operation at higher input currents will increase distortion effects whereas operation at lower currents will improve distortion but decrease the S / N ratio. For examle, operation with 20dB headroom versus 12 dB will improve the relative effects of IMD/THD shown in Figure 2 by 2.5 times. For 20dB headroom, use $\pm 120 \mu \mathrm{~A}$ nominal operating input current. At this level, the sig-nal-to-noise ratio will be 86dB.
The SSM-2013 is capable of 40 dB gain and as much as -95 dB attenuation. Gain or attenuation levels are set by the EXPO con-

FIGURE 2
trol pin as described in the next section. Figure 2 shows how IMD/THD performance degrades with current gain and attenuation. Note also that distortion in the SSM-2013 is nearly all 2nd harmonic. From a sonic standpoint, this is much less objectionable than other types of distortion.
For best performance, choose $C_{1 N}$ and $R_{1 N}$ for a cutoff frequency below the audio band. $\mathrm{C}_{1 N}$ will block DC offsets from previous stages.

OUTPUT SECTION

When establishing circuit gain or attenuation, it is important to consider the tradeoffs between gain/attenuation for the SSM2013 versus the gain of the output amplifier/current to voltage
converter. Operating the SSM-2013 with current gain above 20 or 30 dB increases distortion as shown in Figure 2. Gain in the output amplifier amplifies the VCA noise. This will directly increase the equivalent VCA noise floor by the amplifier gain. A compromise within these constraints will determine the best tradeoff between SSM-2013 current gain and the amplifier gain. Figure 3 shows how output noise increases as current gain increases.

CONTROL PIN EXPO

The control port EXPO (pin 9) is a high impedance input with an exponential control sensitivity of $-1 \mathrm{~dB} / 10 \mathrm{mV}$ or $-10 \mathrm{mV} / \mathrm{dB}$. The overall control range is +40 dB to -95 dB . This pin is easily adaptable to any control voltage range by selecting the R_{1} and R_{2}

FIGURE 3
divider appropriately. Note the negative control relationship where positive voltages at pin 9 result in signal attenuation whereas negative voltages yield gain. The control pin is accurate to within $\pm 1.5 \mathrm{~dB}$ over a $\pm 36 \mathrm{~dB}$ range.

The transfer characteristics for the control pin is shown in Figure 4. Note the dotted line showing an optional improvement in gain accuracy. To achieve this improved transfer characteristic, refer to the circuit of Figure 5. As the recommended circuit forcontrol summing applications, this technique offers a significant improvement in linearity over a wider control voltage range.
The control port sensitivity has a $-3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient. To compensate for this drift, use a $+3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempsistor* in place of R_{1} shown in Figure 1.

MUTING FUNCTION

The mute circuit turns the device on or off independent of the control pin EXPO. Muting is activated when the MUTE (pin 10) is raised above 3.0 V and is compatible up to 15 V . Muting is off when MUTE is below 1.0 V .

FIGURE 4: Circuit Gain/Attenuation vs. $V_{\text {EXPO }}$

FIGURE 5: Control Summer with Improved Linearity over Wider Control Range

A selectable MUTE CAP connected between pin 12 and ground determines the controlled turn onfturn off rate. The recommended $1 \mu \mathrm{~F}$ mute cap and internal $10 \mathrm{k} \Omega$ impedance gives a 10 ms time constant. This transition timing is considered quick without being too abrupt or "poppy."
To disable the muting function, simply ground pin 10.

APPLICATIONS INFORMATION

OUTPUT AMPLIFIER

Note the importance of including $C_{\text {out }}$ in parallel with $R_{\text {OUT }}$ to ensure stability under all signal and output loading conditions. A corner frequency of 300 kHz for the $\mathrm{R}_{\text {OUT }}, \mathrm{C}_{\text {Out }}$ combination is sufficient, but a lower frequency may also be chosen to limit noise output the audio band. This, however will result in a slower transient response.

[^1]
CONTROL FEEDTHROUGH TRIMMING

Control feedthrough is defined as the portion of the control signal fed to the output in the absence of an input signal. A single shunt resistor across pins 2 and 6 will reduce both control feedthrough and noise (see Figure 6). Values from $3.3 \mathrm{k} \Omega$ to $5.4 \mathrm{k} \Omega$ offer an improvement in control feedthrough from 20 dB to 10 dB , respectively.

FIGURE 6

This trim will tradeoff an increase in THD by roughly 3 to 5 times. THD increases slightly more using a lower resistor value. With $3.3 \mathrm{k} \Omega$, the worst case is about 0.4% over gain and attenuation. By comparison, TH'D ranges from 0.05% to 0.1% with no shunt resistor.

TRIMMING DISTORTION

The SSM-2013 has very good distortion, offset and control feedthrough at unity current gain. For applications requiring over 10 dB to 20 dB gain, trimming allows the best overall distortion versus gain.

Distortion Trlm Procedure for High Gain Applications:

1. Apply voltage at pin 9 corresponding to maximum current gain.
2. Set input level. so output is just below clipping.
3. Adjust trimming per Figure 7 until distortion is at a minimum.

COMPENSATION

To compensate, connect a 50 pF capacitor from pin 11 (COMP) to GND as shown in the typical connection.

ON-BOARD REFERENCE

An on-chip zener diode helps establish the -8 V available at the SUB output (pin 8). This is a general purpose reference that can be used to introduce DC offsets.

FIGURE 7

BREADBOARDING THE SSM-2013

A typical connection identical to Figure 1 and redrawn for breadboarding purposes is shown in Figure 8.

MEASURING NOISE

When measuring audio noise in the SSM-2013, bandwidth should be limited to 20 kHz to 30 kHz . This is due to the presence of broadband noise which is caused by a zero at 600 kHz . The zero results from the 5000 pF-47 Ω network at the input. Beyond 30 kHz , the noise floor increases at approximately. 6 dB per octave from 45 kHz to 600 kHz where it rolls off.

FIGURE 8: Typical Connection for Breadboarding

FEATURES

- WIde Dynamic Range \qquad 116dB (Class AB) 104dB (Class A)
- 12MHz Effective Galn-Bandwidth Product
-100dB Open-Loop Gain
- 0.01% THD Class A (Any Gain/Signal) @ $=10 \mathrm{dBV}_{\text {IN/out }}$
- Minimum External Component Count
- No Trimming in Many Appilcatlons
- Low Cost

UNIQUE FEATURES

- Voltage Selectable Class A or AB Operation
- Low Distortion vs. Frequency
- No Active Components Needed
- Operates at $\pm 15 \mathrm{~V}$
- Low Modulation Noise
- Complementary Current Outputs
- Combines Op Amp and VCA Features
- Fully Buffered Control Port
- High and Low (Balanced) Impedance Inputs

APPLICATIONS

- Voltage-Controlled Amplifiers
- Voltage-Controlled Preamplifiers
- Voltage-Controlled Panners
- Voltage-Controlled Equalizers
- Voltage-Controlled Oscillators
- Console Automation Systems
- Dynamics Processors
- Fader Automation

ORDERING INFORMATION

PACKAGE	OPERATING TEMPERATURE PLASTIC 16-PIN
RSMANGE	

PIN CONNECTIONS

DESCRIPTION

The SSM-2014 is an extremely flexible VCA building block that rivals the best monolithic VCAs while approaching the performance of modular devices. This versatile device acts as a VCA or OVCE (Operational Voltage-Controlled Element) and has inputs and outputs that can operate either in the current or voltage domain. To optimize performance at different signal levels, the SSM-2014 features programmable Class A or Class AB operation. This feature, along with the many configurations possible for operation make the SSM-2014 a unique and powerful signal processing tool. The device can be configured as a VCA or VCP (Voltage-Controlled Panner) and can replace a standard VCA and two or more operational amplifiers. Operation as a standard VCA provides up to 50 dB gain and excellent specifications at any signal level. As a result, the SSM-2014 is an ideal choice for any system requiring remote or automatic control of gain or volume.

BLOCK DIAGRAM

[^2]| Supply Voltage Junction Temperature ... Operating Temperature Range Storage Temperature Range. |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |

PACKAGE TYPE	$\Theta_{\mid A}($ Note 1$)$	$\Theta_{\mid C}$	UNITS
16-Pin Plastic DIP (P)	90	47	${ }^{\circ} \mathrm{CW}$

NOTE

1. Θ_{IA} is specitled for worst case mounting conditions, l.e., Θ_{J} is specified for device in socket for P-DIP package.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}= \pm 25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	$\begin{array}{r} \text { SSM-20 } \\ \text { TYP } \end{array}$	MAX	UNITS
INPUT AMPLIFIER					
Blas Current	\cdots	-	100	300	nA
Input Offset Current		-	15	30	nA
Input Offset Voltage		-	0.5	2	mV
Input Impedance		0.5	1	-	M8
Equivalent Input Nolse	@ 1 kHz	-	18	-	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Common-Mode Range		-	+13, -13	-	V
Open-Loop Gain	\therefore	75	100	-	V / mV
Effective Galn BW Product	VCA Configuration VCP Configuration	-	$\begin{array}{r} 12 \\ .5 \end{array}$		MHz
Slew Rate	VCA Configuration	-	6	-	$\mathrm{V} / \mathrm{\mu s}$
Supply Current - Positive		-	7.5	9	mA
Supply Current - Negative		-	10	12	$m \mathrm{~A}$
OUTPUT AMPLIFIERS					
Offset Voltage		-	10	20	mV
Minimum Load Resistor	For Fül Output Swing	10	9	-	k 8
Output Voltage Swing		-	± 13.5	-	V
Noise Residual	20 kHz Bandwidth	-	8	-	$\mu \mathrm{V}$
CONTROL PORT					
Bias Current .		-	150	300	$n \mathrm{~A}$
Input Impedance		-	1	-	M 8
Gain Constant	Ratlo of Outputs	-	-30	-	$\mathrm{mV} / \mathrm{dB}$
Gain Constant Temperature Coefficient		-	-3300	-	ppm/ $/{ }^{\circ} \mathrm{C}$
Gain Linearity		-	0.5	-	\%
Control Feedthrough (Trimmed) Class A Class AB Intermediate	100 Hz Sine Wave Applied to Control Port Causing -30dB to +20dB of Gain	-	2 0.5 1	-	mV
Control Feedthrough (Untrimmed) Class A Class AB (Note 1) Intermediate (Note 1)	100 Hz Sine Wave Applied to Control Port Causing -30dB to +20dB of Gain	- $\because-$ -	25 5 15	75 15 45	mV
Off isolation	@ 1kHz	100	105	-	dB

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}= \pm 25^{\circ} \mathrm{C}$, unless otherwise specified. Continued

PARAMETER	CONDITIONS	MIN	SSM-2014 TYP	MAX	UNITS
Channel Specilications					
Noise - Class A (Note 2)	$\mathrm{F}_{\text {PIN } 12}=33 \mathrm{k} \Omega, 20 \mathrm{kHz} \mathrm{BW}$	-	-85	-81	dBV
Noise - Class AB (Note 2)	$\mathrm{R}_{\text {PIN } 12}=330 \mathrm{k} \Omega, 20 \mathrm{kHz} \mathrm{BW}$	-	-95	-92	dBV
Nolse - Intermediate (Note 2)	$\mathrm{P}_{\text {PIN } 12}=43 \mathrm{k} \Omega, 20 \mathrm{kHz} \mathrm{BW}$	-	-88	-85	dBV
THD - A@ $\mathrm{A}_{\mathrm{V}}=\mathrm{OdB}$ (Note 3)	$\mathrm{P}_{\text {PIN 12 }}=33 \mathrm{k} \Omega$	-	0.005	0.02	\%
THD - A @ $A_{V}= \pm 20 \mathrm{~dB}$ (Note 3)	$\mathrm{R}_{\text {PIN } 12}=33 \mathrm{k} \Omega$	-	0.02	0.04	\%
THD - AB@ $A_{V}=0 \mathrm{~dB}$ (Note 3) ${ }^{\text {a }}$	$\mathrm{R}_{\text {PIN } 12}=330 \mathrm{k} \Omega$	-	0.02	0.05	\%
THD - AB @ $\mathrm{A}_{V}= \pm 20 \mathrm{~dB}$ (Note 3)	$\mathrm{R}_{\text {PIN } 12}=330 \mathrm{k} \Omega$	-	0.06	0.12	\%
THD - Intermediate @ $A_{V}=0 \mathrm{~dB}$ (Note 3)	$\mathrm{R}_{\text {PIN 12 }}=43 \mathrm{k} \Omega$	-	0.01	0.03	\%
THD - Intermediare @ $\mathrm{A}_{\mathrm{V}}= \pm 20 \mathrm{~dB}$ (Note 3)	$\mathrm{R}_{\text {PIN 12 }}=43 \mathrm{k} \Omega$	-	0.03	0.06	\%

NOTES:

1. Symmetry trim only.
2. Parameter sample lot tested to maximum limits.

THEORY OF OPERATION

The simplified schematic shows that the SSM-2014 is fundamentally a controllable gain block that operates in the current or voltage mode. The outputs are the product of an input signal and a control signal. These outputs along with differential inputs, a control port, and selectable bias for Class A or AB operation give the SSM-2014 unparalleled flexibility. It is important to note, however, that actual implementation of any given function can only be realized by applying feedback as shown in the applications sections.

INPUT SECTION

For most applications, input signals should be coupled by a DC blocking capacitor to prevent errors from previous stages from affecting control feedthrough. The input section consists of an op amp with differential inputs and a gain-variable compensation scheme controlled by the gain control port. The variable compensation makes it possible to maintain a bandwidth in excess of 120 kHz over the gain range of $\pm 40 \mathrm{~dB}$.
The output of the op amp faces a current splitter with a variable bias point controlled by pin 12. This bias point establishes the quiescent current in the gain core which sets the class of operation (Class A, AB or INT). The class of operation selected affects the noise, distortion, and control feedthrough performance.

IMPORTANT NOTE

A current between 40 to $500 \mu \mathrm{~A}$ must be sourced into pin 12 for proper operation of the device. Without such a current, the output signal will appear half-wave rectified.
3. $\mathrm{V}_{\text {IN }}$ and/or $\mathrm{V}_{\mathrm{OUT}}=+10 \mathrm{dBV}$. Specifications may be subject to change without notice.

SELECTING CLASS OF OPERATION

The class of operation is set by the current into pin 12. A resistor connected between pin 12 and V_{+}can be used to establish this current. Table 1 indicates the recommended resistor values and typical performance tradeoffs for various classes of operation.
Class A operation is preferred for its distortion performance, particularly at high signal levels and over gain and attenuation. Distortion in Class A is nearly pure second harmonic, which from a sonic standpoint, is much less objectionable than other types.
Class. AB operation provides significantly better control feedthrough performance and lower noise which is important at low signal levels.

DYNAMICALLY SETTING CLASS OF OPERATION

In order to realize the virtues of both classes of operation, it is possible to use a level detector to sense the input signal and dynamically change the VCA from Class AB at lower signallevels to Class A for signals above this (sometimes referred to as "sliding bias"). Low signal levels are usually considered to be less than +4 dBV . A time constant in the range of 10 to 25 milliseconds should be included in the level detector to both smooth the signal and to subjectively eliminate the resulting noise floor modulation and output offset shift. Both of these effects are small compared to the signal level at which the class of operation changes.

TABLE 1

CLASS	A	AB	INTERMEDIATE	CONDITION
$\mathrm{R}_{\text {SET }}$	33k Ω	$330 \mathrm{k} \Omega$	$43 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
Noise	-84dBV	-95dBV	-88dBV	20 kHz Bandwidth
THD @ $A_{\nu}=0 \mathrm{~dB}$	0.005	0.02	0.010*	+10dBV ${ }_{\text {IN/OUT }}$ @ 1 kHz
THD @ $A_{v}= \pm 20 \mathrm{~dB}$	0.02	0.06	$0.030 *$	+10dBV ${ }_{\text {IN/OUT }} @ 1 \mathrm{kHz}$
THD Type	Pure 2nd	Mostly 3rd	2nd*	
Trimmed Control Feedthrough	2 mV	$500 \mu \mathrm{~V}$	1 mV	$-30 \mathrm{~dB} \leq$ Gain $\leq+20 \mathrm{~dB}$

*For intermediate operation near unity-gain, distortion will increase and become mostly third harmonic for levels above +14 dBV in/out.

FIGURE 1: SSM-2014 Operating Class Control Circuit (Sliding Bias)

Figure 1 shows a typical level detector circuit which senses the input and/or output signal level and changes the SSM-2014 from C lass $A B$ to A when the signal exceeds $+4 \mathrm{dBV}\left(R_{R E F}=270 \mathrm{k} \Omega\right)$. Sensing the output signal is important in high-gain applications such as the voltage-controlled preamp. This circuit is a full-wave rectifier followed by an integrator which provides a fast, smooth transition. The 12 V zener clamp diode in the feedback loop improves ripple rejection by maintaining the op amp output in its linear operating range. The output resistor network provides the program current into pin 12 for Class A or $A B$ operation when the integrator output is high (+12 V) or low (-0.6 V) respectively. The program current is $500 \mu \mathrm{~A}$ when the device operates in Class A (high) and $40 \mu A$ when operating in Class $A B$ (low).

CONTROL SECTION

The control sensitivity of the control port is $-30 \mathrm{mV} / \mathrm{dB}$ at pin 11. A simple resistor divider is ordinarily used to scale the control voltage source range to the desired voltage applied at the control port. This pin can draw as much as 300 nA of bias current so the impedance of the divider to ground should be kept low. $10 \mathrm{k} \Omega$ or less is recommended to keep gain error resulting from the voltage drop to a minimum. The graph of Figure 2 shows the control voltage transfer characteristic by plotting $\mathrm{V}_{\text {CONTROL }}$ (at pin 11) vs. gain/attenuation over different temperatures.
When using the control pins, care must be taken to eliminate coupling to signal paths, particularly when using higher impedances.
The control port has a - $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient as do all dB / \sim VCAs. To compensate for this drift in automation systems, use a single tempsistor* with a $+3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift to replace the reference current set resistor in the system DAC. Temperature compensation can also be accomplished by using a tempsistor connected to the control pin to ground as part of the control input attenuator. This will improve tempco performance by five to ten times.

OUTPUT SECTION

The SSM-2014 has three current outputs and two voltage outputs. The current outputs can deliver at least $675 \mu \mathrm{~A}$ signal current when operating on $\pm 15 \mathrm{~V}$ supplies. Feedback resistors for the internal or external current-to-voltage converter op amps should not be lower than $20 \mathrm{k} \Omega$ with $\pm 15 \mathrm{~V}$ supplies. In normal operation, the current outputs are virtual grounds. The SSM2014 block diagram shows that amplifiers A_{1} and A_{2} act as current mirrors that maintain the $+\mathrm{CUR}_{1-G}$ to ground potential. Amplifiers A_{3} and A_{4} are used as current-to-voltage converters and maintain -CUR ${ }_{G}$ and -CUR ${ }_{1-G}$ at ground. If external op amps are used for this purpose, the on-board op amps can be disabled by connecting their outputs to the negative supply as shown in. Figure 6. When used, the on-board op amps have current outputs and can sink in excess of 10 mA and source a minimum of 1.5 mA .

APPLICATIONS

The SSM-2014 can be used in a variety of ways. The most straightforward and perhaps the most often used configuration is that of a simple VCA. Here, the minimum VCA uses its own

FIGURE 2: $V_{\text {CONTROL }}$ at Pin 11 vs. Gain/Attenuation

FIGURE 3a: Simple VCA
on-board op amps and using the configuration of Figures 3 a and 3b, performs the basic VCA function of logarithmic voltage-controlled gain. In this application, the VCA is fixed in Class A or AB operation, whichever optimizes the tradeoff between noise and distortion.
Other functions are easily implemented using the SSM-2014 as an operational voltage-controlled element or "core" for other VCA configurations, including voltage-controlled panners and voltage-controlled preamplifiers. These applications will be described in the sections to follow.

SIMPLIFIED VCA OPERATION

The SSM-2014, when configured as a simple VCA, is a selfcontained minimum component VCA with single-ended or differential inputs and a voltage output. The basic VCA configuration is shown in Figures 3a and 3b. Gain of $\mu \mathrm{p}$ to 50 dB is set by a voltage applied to the control pin. Current feedback from + CUR $_{1.6}$ to the -INPUT and --CUR 1.G $^{\text {to }}$ the +INPUT creates differential virtual ground inputs. Input signals may be applied through blocking capacitors and $22 \mathrm{k} \Omega$ resistors to pins 6 or 7

FIGURE 3b: Block Diagram of Simple VCA
($+\mathbb{N}$ and $-\mathbb{N}$). For single-ended inverting or noninverting operation, connect the unused input through $22 \mathrm{k} \Omega$ to ground for best performance. Also, when large common-mode signals are present in differential operation, choose Class A operation.
Figure 4A shows typical distortion measurements uising this circuit over gain and attenuation at 1 kHz . (Figures $4 \mathrm{~b}, 4 \mathrm{c}$ and 4 d show THD vs. frequency for Class A and $A B$ operation using +10 dBV input.) These curves show THD at gain settings of $+10 \mathrm{~dB}, 0 \mathrm{~dB}$, and -10 dB , respectively. Figure 4 b is the worst case showing the amplifier near clipping.
The noise performance of the device with shorted inputs measured over a 20 kHz bandwidth is seen in Figure 5. Three cases are shown: full Class A, Class $A B$, and Intermediate bias between the two extremes.
The tests for Figures $4 \mathrm{a}, 4 \mathrm{c}$ and 4 d were made with a singleended 1 kHz source driving the input and/or output to a signal level of +10 dBV regardless of gain or attenuation. This is 10 dB below clipping.

FIGURE 4a: VCA THD Performance Curves

FIGURE 4b: THD at $+10 d B$ Gain $\left(+10 d B V_{\text {IN }}\right)$

FIGURE 4c: THD at OdB Gain

FIGURE 4d: THD at -10dB Attenuation

FIGURE 5: VCA Noise vs. Gain (20kHz) Bandwidth

FIGURE 6: Outboard OVCE

COMPENSATION

To ensure stability when driving some distortion analyzers, it was found necessary to add a 300 pF capacitor between pin 12 and GND in Figure 3a as shown. This is because high-gain preamp and AGC circuits in such measuring systems can cause ground loop problems which can lead to instability and false distortion readings. The output can drive capacitive loads of up to 100 pF with little or no degradation in performance.

BASIC OVCE CONNECTIONS

Figure 6 shows the SSM-2014 as an operational voltage-controlled element with outboard cuirrent-to-voltage converter amplifiers. This diagram shows the SSM-2014 with uncommitted inputs and outputs and forms only the core of the application circuits to follow. Feedback is required to actually implement any given function. Notethat Figure 6 uses an external 5532 op amp and has somewhat better output drive, distortion and noise performance. Pins 14 and 16 are tied to V-which disables the onboard op amps. The outputs used for feedback connections are now at the outputs of the external op amps and are now called V_{G} and V_{1-G}. Use of a 5532 is recommended since use of a TL072 would require that the SSM-2014 be somewhat overcompensated resulting in reduced bandwidth.

OVCE OPERATION

The complete SSM-2014 is a combination of a VCA structure and an operational amplifier. To simplify analysis, assume the op amp portion has infinite gain. (The finite gain limitations of the OVCE cause substantially the same problems as are found with conventional op amps and can be handled and appreciated in. the same way.) This means we can apply the same rules used for the ideal op amp.
Since this device is intended for use only with negative feedback, the infinite gain assumption yields the usual contraint that in any closed-loop contiguration, the voltage between the + and - inputs is zero. This is the same assumption that is typical of op amps where both inputs are forced to be at the same potential. In addition to this, we have the VCA constraint, that the ratio of the V_{G} and V_{1-G} outputs are always $e^{-a V_{c}}$, where " a " is about 4 at room temperature, regardess of the configuration.
These two assumptions make calculation of the transfer characteristics simple for any configuration. Note that the VCANCP connections of Figures 7, 8, 9 and 12 resemble non-voltagecontrolied functions implemented with op amps.

FIGURE 7: Noninverting VCA

VCA/VCP FEEDBACK CONNECTIONS

For the following examples, the core configuration of Figure 6 will be used. First, examine the feedback connection for the noninverting VCA of Figure 7. Here, the op amp assumption guarantees that the V_{1-G} output exactly follows the input, while the V_{G} output tracks the input with a gain of $e^{-\mathrm{a} V_{\mathrm{c}}}$. This means that this circuit simultaneously implements a voltage follower and a true exponential VCA.
Grounding the noninverting input and applying feedback as shown in Figure 8 yields the inverting VCA amplifier. Outputs are now $-V_{\text {IN }}$ and $-V_{\text {IN }}\left(\mathrm{e}^{-\mathrm{aV}} \mathrm{V}_{\mathrm{C}}\right)$.

COMPENSATION

To ensure stability for VCA operation as described above, a capacitor greater than or equal to 220 pF should be placed between pin 5 (COMP 1) and pin 8 (COMP 2). Pin 9 (COMP 3) should be left open.

FIGURE 8: Inverting VCA

PANNING CIRCUIT

Figure 9 shows the SSM-2014 used as a voltage-controlled panning circuit. This is accomplished by feeding back signals from both the $\mathrm{V}_{1-\mathrm{G}}$ and V_{G} outputs simultaneously. In this circuit, the signal at the inverting input is the average of the two outputs due to the balanced feedback (identical resistors). The assumption that the inputs are held to the same potential, therefore,

FIGURE 9: SSM-2014 or OVCE as a Noninverting VoltageControlled "Panning" Circuit
says that the average of the two outputs is always equal to the input. Because the ratio of the two outputs can be made to cover many orders of magnitude, it is possible to "pan" the input signal from the V_{1-G} output to the V_{G} output through the use of the control voltage. Setting V_{c} to zero is the "center" position, since the ratio is unity there. Positive control voltages will increase V_{1-G} and attenuate the V_{G} output. Conversely, setting V_{c} to negative voltages will increase V_{G} and attenuate $\mathrm{V}_{1-\mathrm{G}}$.
Noise and distortion periormance are completely complementary where noise is lower and THD is higher in Class AB and the reverse for Class A. Figures 10 and 11 show the distortion and noise at the V_{G} or $V_{\text {out }}$ (right) output only, where V_{1-G} and $V_{\text {our }}$ (left) are symmetrical. Figure 11 shows noise vs. gain in Class $A B$ bias only.

FIGURE 10: VCP Typical THD Performance Curves $\{1 \mathrm{kHz}$ $\left.+\operatorname{lodB} V_{\sigma} V_{1-G}\right)$ Noninverting

FIGURE 11: Noise Performance of Circuit of Figure 10 (20kHz Bandwidth) Noninverting

In Class AB operation at a maximum gain of unity, the variable compensation is not required and gain-bandwidth product is not of concern. Slew rate is $6 \mathrm{~V} / \mu$ s for the inverting configuration and approximately $3 \mathrm{~V} / \mu$ s for the noninverting connection (Figure 9). Control feedthrough for the voltage-controlled panner is $500 \mu \mathrm{Vp-p}$ with a 100 Hz sine wave varying the gain from maximum to -40 dB .
This panning circuit may be configured for inverting or noninverting operation in the same way that any operational amplifier circuit might be used. Grounding the +input and feeding the signal input through a resistor to the - input creates the inverting analogy to this example (Figure 12). The SSM-2014 is noteworthy for truly exceptional noise and distortion performance for the VCP, one of its unique uses.

COMPENSATION

For best stability when used in panning circuits, connect a capacitor greater than or equal to 330 pF across pin 5 (COMP 1) and pin 8 (COMP 2) while grounding pin 3 (COMP 3).

VCA PREAMPLIFIER

A simple variation of the above VCA example is given in Figure 13 which shows the SSM-2014 configured as a full VCA preamp accepting both high and low impedance inputs simultaneously. Here, the feedback from the V_{1-G} output to the - input causes the V_{1-G} output to follow the input with a fixed gain, which is about $10(20 \mathrm{~dB})$ inband. (Inband is the portion of the input signal at frequencies above the $\mathrm{R}_{1}, \mathrm{C}_{1}$ cutoff.) This behaves in exactly the same manner as the output of a noninverting operational amplifier. At the same time, however, the V_{G} output is voltagecontrolled with a gain of $e^{-a V_{c}}$ times the V_{1-G} output or $10 e^{-a V_{c}}$ times the input inband signal.

FIGURE 12: VCA as an Inverting Voltage-Controlled "Panning" Circuit

FIGURE 13: Voltage-Controlled Preamplifier Accepts Both High and Balanced Low Impedance Inputs

Performance curves for the VCA preamp are shown in Figures 14 and 15. Measurements for this data were taken with a signal applied to the high impedance input using the INT (Intermediate) bias setting. Performance in Class A or AB will vary from the INT setting in practically the same way as for the VCA. Distortion measurements were made by configuring the VCA to drive one or both outputs to +10 dBV with a 1 kHz sine wave applied. Auxiliary specifications are quite good for the device operating in this configuration. The effective gain-bandwidth product was measured to be 12 MHz with an accompanying slew rate of about $10 \mathrm{~V} / \mu \mathrm{s}$. The control feedthrough was measured at 3 mV peak-to-peak, with a 100 Hz sine wave varying gain from +40 dB to 0 dB . Tests were also conducted with a balanced 600Ω input using more than 70 dB of gain which showed essentially the same noise and distortion.

FIGURE 14: Preamp THD Performance vs. Gain

FIGURE 15: Preamp Noise Performance vs. Gain (20kHz Bandwidth)

AUTOMATIC GAIN CONTROL

An automatic gain control circuit can easily be implemented using the SSM-2014 and DAC-08 8-bit DAC. In this type of application, a DAC-08 could be digitally controlled to set the control voltage for the desired gain or attenuation with the SSM2014 configured as a VCA or voltage-controlled preamplifier.

TRIMMING THE SSM-2014

Two TRIMPOTs ${ }^{\text {TM }}$ are shown in each circuit. Figure 16 shows the basic scheme for trimming symmetry and offset. Both trims affect offset and control feedthrough while the symmetry trim also affects distortion. The waveform symmetry trim is mandatory for Class AB operation, but may not be required for less critical Class A-only operation. Offset trimming is needed when it is necessary to improve the untrimmed control feedthrough performance in either Class A or $A B$ operation.

TRIM PROCEDURE

1. Symmetry trim - perform first if used. Apply a 1 kHz sine wave at +10 dBV with the amplifier set at unity gain.
2. Adjust symmetry trim to minimize distortion.
3. Ground input signal and apply a 100 Hz sine wave to the control port. The sine wave should have its high and low peaks correspond to the highest gain and 30 dB attenuation, respectively.
4. Adjust the offset trim to null control feedthrough.
5. Further reduction of control feedthrough can be achieved by a slight readjustment of the symmetry trim when in Class A operation. (This is not useful for Class AB:)
6. When a level detector switching scheme is used to select Class A and Class $A B$ operation, choose the Class $A B$ symmetry null point. This is the best choice since control feedthrough null points for Class A and Class AB operation do not exactly coincide.
As noted in the input section, the DC blocking capacitor in series with the input will prevent offsets of previous stages from affecting the control feedthrough performance.

FIGURE 16: Symmetry and Offset Trimming Scheme

For many applications such as panning and equalizer circuits, control feedthrough trimming should not be required. Control settings for these circuits are usually established at setup and varied infrequently. In these types of circuits, audible control feedthrough can aiso be suppressed by inserting a 10 to 20 ms time constant in the control signal path.

SELF-CONTAINED OVCE

Figure 17 shows a self-contained OVCE building block. It is used as the core element for VCAs and panning circuits in a similar fashion to the out-board OVCE element of Figure 6. Unlike Figure 6, however; this configuration utilizes the onboard op amps and needs only the SSM-2014 for the active electronics. This circuit tends to be more sensitive to oscillation than other configurations when prototyped on typical proto boards or even copper-clad vector boards. For this reason, use of the SSM-201.4 evaluation board is recommended.

FIGURE 17: Self-Contained OVCE

FADER AUTOMATION SYSTEMS

The SSM-2014 lends itself well to fader automation applications. The circuit of Figures $3 a$ and $3 b$ is the most common where simple gain control would be used to amplify or attenuate signals in multi-channel systems. As an example, an SSM-2300 8-channel multiplexed sample-and-hold could be used along with a PM-7541 12-bit DAC to control the gain or attenuation of systems with a multiple of eight channels. Here, the DAC is used to set any given VCA control voltage port for gain or attenuation while the SSM-2300 captures and distributes the appropriate control voltage to the appropriate VCA in a time multiplexed system. With each channel updated by the time distributed SSM-2300 output, a real time fader automation system can be implemented:

DYNAMIC RANGE PROCESSORS

Similar to applications described for the SSM-2120, the SSM2014 can be used in conjunction with the SSM-2110 level detector to implement virtually any dynamic range processing function. These may include noise reduction systems, compressor/ limiters, noise gates, psychoacoustic enhancers and automatic microphone mixers.

SSM-2014 EVALUATION BOARD

An evaluation PCB for the SSM-2014 is available free of charge to qualified OEMs. It permits easy evaluation of the sliding bias control circuit (Figure 1), simple VCA (Figures 3a, 3b), outboard OVCE (Figure 6), and the self-contained OVCE (Figure 17). In order to avoid confusion, please use the PCB marked "Rev 3, 1/ $90^{\prime \prime}$ for proper reference to the appropriate circuits. Contact your local PMI sales office for details.

ADVANCE PRODUCT INFORMATION

FEATURES

- Wide Dynamic Range \qquad 118dB (Class AB Typ) . 108dB (Class A Typ)
- Improved THD and IMD over Gain, Attenuation, and Frequency
- Low Control Feedthrough \qquad $500 \mu \mathrm{~V}$ (Class AB Typ)
- Buffered Control Port
- Accepts Low or High Impedance Inputs
- Extended Industrial Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Few External Components
- Low Cost

APPLICATIONS

- Mix Console Fader Automation Systems
- Compressor/Limiters
- Nolse Gates
- Nolse Reduction Systems
- Telephone Line Interfaces
- Surround Sound Systems
- Automatic or Remote Volume Controllers
- Voltage-Controlled Equalizers
- Voltage-Controlled Panners

ORDERING INFORMATION

PACKAGE	OPERATING TEMPERATURE PLASTIC 16-PIN
SSM2018P	RANGE
XIND $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

GENERAL DESCRIPTION

The SSM-2018 is a pin compatible upgrade to the SSM-2014, offering improved specifications while maintaining applications flexibility. Improvements include lower noise and lower distortion, particularly over gain and attenuation, with increased bandwidth. PMI's thin-film resistor capability results in fewer required external components than the SSM-2014.
Differential inputs and outputs are provided that permit voltage or current operation. An additional feature is the SSM-2018's programmable gain core, which allows Class $A, A B$, intermediate, or "sliding bias" operation. As a result; the SSM-2018 is an excellent choice for all common VCA applications, as well as Operational Voltage-Controlled Element (OVCE) functions such as voltage-controlled panners and equalizers.

Combined with a PM-7524 DAC and SSM-2300 8-channel multiplexed sample-and-hold, the SSM-2018 enables the design of high performance fader automation systems with few components. The SSM-2018 and SSM-2110 can be used as the nucleus of a state-of-the-art dynamic range processor.

PIN CONNECTIONS

BLOCK DIAGRAM

[^3]Precision Monolithics Inc.

FEATURES

- Four VCAs in One Package
- Ground Referenced Current Control Inputs
- $82 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ at 0.3% THD
- Full Class A Operation
- - 40 dB Control Feedthrough (Untrimmed)
- Easy Signal Summing
- 6\% Gain Matching

APPLICATIONS

- Electronic Musical Instruments
- Noise Gating
- Compressor/Limiters
- Signal Mixing
- Automatic Gain Control
- Voltage-Controlled Oscillators

ORDERING INFORMATION

PACKAGE	OPERATING
PLASTIC	TEMPERATURE
16-PIN	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
SSM2024P	

GENERAL DESCRIPTION

The SSM-2024 is a quad Class A noninverting current-controlled transconductance amplifier. Each of the four VCAs is completely independent and includes a ground referenced linear current gain control. These voliage-in/current-out amplifiers offer over 82 dB S/N at 0.3% THD. Other features include low control voltage feedthrough and minimal external components for most applications. With four matched VCAs in a single IC; the SSM-2024 provides a convenient solution for applications requiring multiple amplifiers. The pinout groups the four outputs for easy signal summing for circuits such as four-channel mixers.

PIN CONNECTIONS

BLOCK DIAGRAM

The SSM-2024 ls mask work protected under the Semiconductor Chip Protection Act of 1983.

ABSOLUTE MAXIMUM RATINGS

Junction Temperature ... $+150^{\circ} \mathrm{C}$
Operating Temperature Range -10 to $+50^{\circ} \mathrm{C}$
Storage Temperature Range 65 to $+150^{\circ} \mathrm{C}$
Maximum Current into Any Pin 10mA
Lead Temperature Range (Soldering, 60 sec) $300^{\circ} \mathrm{C}$

PACKAGE TYPE	θ_{JA} (Note 1)	θ_{IC}	UNITS
14-Pin Plastic DIP (P)	90	47	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

1. $\Theta_{j A}$ is specified for worst case mounling conditions, lie., $\theta_{j A}$ is specified for device in socket for P-DIP package.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

:	.		SSM-2024			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP.	MAX	UNITS
Positive Supply Current	${ }^{+1}$	$\begin{aligned} & \mathrm{I}_{\mathrm{CON}}(1-4)=0 \quad \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{CON}}(1-4)=0 \quad \mathrm{~V}_{\mathrm{S}}= \pm 16.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.95 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 1.55 \end{aligned}$	$\begin{array}{r} 1.85 \\ 2.05 \end{array}$	mA
Negative Supply Current	${ }^{-1}$ SY	$\begin{aligned} & I_{\operatorname{CoN}}(1-4)=0 \quad V_{S}= \pm 15 \mathrm{~V} \\ & I_{\text {CON }}(1-4)=0 V_{S}= \pm 16.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.05 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 1.55 \\ & 1.65 \end{aligned}$	$\begin{aligned} & 2.05 \\ & 2.25 \end{aligned}$	mA
Gain	G	$l_{\text {CON }}(1-4)= \pm 500 \mu \mathrm{~A}$	3842	4085	4330	$\mu \mathrm{mhos}$
Gain Matching	$\Delta \mathrm{G}$	$\mathrm{ICON}^{(1-4)}= \pm 500 \mu \mathrm{~A}$	-	-	± 6	\%
Input Offset Voltage	$V_{\text {OS }}$	$\begin{aligned} & V_{I N}=0 V I_{\operatorname{CON}}(1-4)= \pm 500 \mu \mathrm{~A} \\ & I_{\mathrm{CON}}(1-4)=+250 \mu \mathrm{~A} \end{aligned}$	-	$\pm .4$	± 1.3	mV
Change in Offset Voltage	$\Delta V_{\text {OS }}$	$\begin{aligned} & +2.5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{CoN}}(1-4) \leq+250 \mu \mathrm{~A} \\ & +250 \cap \mathrm{~A} \leq \mathrm{I}_{\mathrm{CoN}}(1-4) \leq+250 \mu \mathrm{~A} \end{aligned}$	\cdots	$\begin{aligned} & \pm 100 \\ & \pm 250 \end{aligned}$	$\begin{aligned} & \pm 840 \\ & \pm 840 \end{aligned}$	$\mu \mathrm{V}$
Output Leakage	${ }^{\text {OL }}$	$\mathrm{l}_{\mathrm{CON}}(1-4)=0$	-	0.1	± 5	nA
Control Rejection (Untrimmed)	CVR	$\begin{aligned} & \mathrm{ICON}(1-4)=500 \mu A \\ & V_{\mathrm{IN}}(1-4)=40 \mathrm{mV} V_{p-p} \end{aligned}$	30	41.5	-	dB
Signal-to-Noise	S/N	$V_{1 N}(1-4)=40 \mathrm{~m} \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$:	-	82	-	dB
Distortion	THD	$V_{1 N}(1-4)=40 \mathrm{mV} \mathrm{V}_{\mathrm{p} \text {-p }}$	-	0.3	-	\%
Threshold Input Control Voltage	$\mathrm{V}_{\mathrm{TC} 1}$	lout ${ }^{(1-4)}=0$	+160	-	+220	mV

NOTE: Specifications subject to change; consult latest data sheet.

SIMPLIFIED SCHEMATIC (1 OF 4 AMPLIFIERS)

THEORY OF OPERATION

The SSM-2024 is a quad transconductance amplifier. Its volt-age-in/current-out transfer functions are controlled by ground referenced linear current inputs. As shown in the simplified schematic, the control current is mirrored in the input stage current source. This sets the operating level for the input differential pair. The operating level established by $I_{\text {CONTROL }}$ will determine the slope of the $\mathrm{I}_{\mathrm{OUT}} N_{\text {IN }}$ transfer characteristic. Each independent device is configured as a noninverting transconductance amplifier and rated for $\pm 15 \mathrm{~V}$ operation.

SIGNAL INPUTS

The signal inputs offer the best offset and control rejection when shunted with 200Ω to ground. This resistor along with $R_{\text {IN }}$ form the voltage divider to scale the input signal. Select R_{IN} to set the maximum operating level for the largest input signal.

This selection will determine the VCAs operating levels which have tradeoffs as shown in Figures 1 and 2. As the input signal level is increased, the effective signal-to-noise and control rejection will increase (improve). However, a larger input signal also means more THD.

The signal at the input of the device will be:
$V_{I N}^{\prime}=V_{I N}\left(\frac{200}{R_{I N}+200}\right)$
(where $V_{\text {IN }}$ is the applied input). The circuit transconductance ${ }^{\text {OUT }}$ ($N_{\text {IN }}$ ' is: '
$g_{m}=8.17 I_{\text {CONTROL }}=\frac{I_{\text {OUT }}}{V_{I N}}$
Therefore, the output current expressed as a function of the control current and the applied input signal is:
$I_{\text {OUT }}=8.17 I_{\text {CONTROL }}=\left(\frac{200}{R_{I N}+200}\right) V_{I N}$
A graph of some typical operating levels is shown in Figure 3. Note this plot is for a general application where
$R_{I N}=R_{\text {CONTROL }}=10 \mathrm{k} \Omega$
For output voltage vs. $V_{\text {iN }}$ see the right axes of the graph using $\mathrm{R}_{\text {OUT }}=10 \mathrm{k} \Omega$.

CONTROL INPUTS

Each control input is a low impedance, ground referenced linear current control input. When operated in its active region, input impedance is approximately 250Ω. When operating with an applied control voltage, connect a series resistor. Select $\mathrm{R}_{\mathrm{CON}}$ so $V_{\text {CONTROL }} \max / R_{\text {CON }}$ is no more than $500 \mu \mathrm{~A}$.

FIGURE 1

FIGURE 2

FIGURE 3: SSM-2024 $g_{m}=I_{o U T} N_{I N}$

The VCA will turn completely off as the control voltage drops below approximately 200 mV . The control pin can go as low as V - with no adverse effects. Control voltages usually do not exceed 10V. It is possible to operate at higher voltages with current timiting. If the control pin is shorted directly to $V+$, however, the power dissipation rating of the package will be exceeded within 10 to 20 seconds.

OUTPUTS

The SSM-2024 is a current output device. Operating in the current mode as virtual grounds, the outputs have a voltage compliance of only about 500 mV . For large output voltages an op amp is used as a current-to-voltage converter as shown in Figure 4. Selecting $R_{\text {out }}$ will determine the output voltage range as
$V_{\text {OUT }}=I_{\text {OUT }}\left(R_{\text {OUT }}\right)$.
The outputs can be used directly in many applications where voltage ranges are small, such as the exponential input of a voltage-controlied filter or other logarithmic-control voltage devices.

Outputs are conveniently located together at the center of the package for easy connections in signal summing applications.

DISTORTION

As shown in Figure 2, operation at higher signal levels will increase THD (Total Harmonic Distortion). For many applications such as control paths where a single input signal is being processed, distortion effects are minimal. This is because distortion only slightly alters the harmonic structure of a saw, pulse or triangle shaped waveform already rich in harmonics.
In the final VCA, however, where two or more signals are present, the effects of IMD (Intermodulation Distortion) become more significant. Intermodulation distortion is unwanted sideband signals produced by the circuit at frequencies that are the sums and differences of the harmonics present at the inputs.
In a Class A VCA, IMD will increase with increasing input signal level at the same rate as THD. For such applications, we recommend use of the SSM-2024 at signal levels corresponding to THD of no more than 0.3% (see Figure 2).

APPLICATIONS

The following examples were developed for musical instrument applications but also illustrate general methods of use. Applications for the SSM-2024 are numerous in programmable music
systems. A waveform mixer following tone sources is shown in Figure 4. This type of mixer can be configured in several ways to allow the various waveforms and tone sources to be mixed under program control. Choice of mixer configurations depends on system philosophy and the number of tone and noise sources to be considered.
The SSM-2024 can also be used as the final VCA/volume and filter controls. This would make keyboard tracking and envelope sweep programmable.

FIGURE 4: Four-Channel Mixer (4-1)

FIGURE 5: Modulation Oscillator

A practical modulation oscillator is shown in Figure 5. Here, the device is used in the circuit to control the oscillator frequency and the amount of modulation signal onto the modulation buses.
A. VCA with programmable amplitude modulation control is shown in Figure 6. This circuit also exhibits direct interface to the SSM-2044 VCF without adding an op amp or offset adjustments.

*MODULATION INCREASES FROM ZERO WITH NO INPUT TO 100\% AT PEAK LEVEL.

FIGURE 6: VCA with Amplitude Modulation

Two of the SSM-2024 channels can be used with the SSM-2220 dual PNP transistor in an exponential cross-fade circuit. Figure 7 shows how the PNP splits a common linear control current according to the bias of the PNP pair. Here, the voltage called "exponential cross-fade control" will determine the relative amount of the two signals at the inputs of the VCAs in the mix.

The transfer characteristic of this circuit is shown in Figure 8. This plot is normalized to the balance point where each VCA has equal current $(250 \mu \mathrm{~A})$. This is plotted as the 0 dB or unity-
gain point. As the control voltage is swept positive or negative, the control current in each VCA is varied logarithmically. As the control voltage is increased, VCA B receives increased current as VCA A's current attenuates at a more rapid logarithmic rate. This applies inversely for decreasing control voltages. At the maximum positive or negative control voltages, VCA B or VCAA receives virtually all $500 \mu \mathrm{~A}$ and is 6 dB above the balance point.
To operate a single VCA with exponential control sensitivity, simply ground the collector of the unused PNP.

FIGURE 7: Exponential Cross-Fade Controller

FIGURE 8: Normalized Transfer Characteristic of a Exponential Cross-Fade Controller

FEATURES

- 0.01\% THD at +10dBV In/Out
- 100dB VCA Dynamic Range
- Low VCA Control Feedthrough
- 100dB Level Detection Range
- Log/Antllog Control Paths
- Low External Component Count

APPLICATIONS

- Compressors
- Expander
- Limiters
- AGC Circuits
- Voltage-Controlled Filters
- Noise Reduction Systems
- Stereo NoIse Gates

ORDERING INFORMATION

PACKAGE		OPERATING	
PLASTIC	PLASTIC	TEMPERATURE	
16-PIN	22-PIN	RANGE	
SSM2122P	SSM2120P	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	

SIMPLIFIED SCHEMATIC (VCA Section Only)

GENERAL DESCRIPTION

The SSM-21.20 is a monolithic integrated circuit designed for the purpose of processing dynamic signals in various analog systerms including audio. This "dynamic range processor" consists of two VCAs and two level detectors (the SSM-2122 consists of two VCAs only). These circuit blocks allow the user to logarithmically control the gain or attenuation of the signals presented to the level detectors depending on their magnitudes. This allows the compression, expansion or limiting of AC signals, some of the primary applications for the SSM-2120.

PIN CONNECTIONS

[^4]
ABSOLUTE MAXIMUM RATINGS

ción Temperature .. $+150^{\circ} \mathrm{C}$

PACKAGE TYPE	$\theta_{\text {IA }}$ (Note 1)	$\boldsymbol{\theta}_{1 \mathrm{C}}$	UNITS
16-Pin Plastic DIP (P)	86	10	${ }^{\circ} \mathrm{CM}$
22-Pin Plastic DIP (P)	70	7	${ }^{\circ} \mathrm{C} \mathbf{W}$

NOTE:

i. $\theta_{i A}$ is specified for worst case mounting condtions, lie., θ_{A} is specified for device in socket for P-DIP.

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 15 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\text {REF }}=200 \mu \mathrm{~A}, \mathrm{~A}_{V}=1$, unless otherwise noted.

PARAMETER		SSM-2120/SSM-2122			UNITS
	CONDITIONS	MIN	TYP	max	
POWER SUPPLY					
Supply Voltage Range		± 5	$-$	± 18	V
Positive Supply Current	\cdots -	-	8	10	mA
Negative Supply Current		-	6	8	mA
VCAs					
Max ISIGNaL (In/Out)		± 387	± 400	± 413	$\mu \mathrm{A}$
Output Offset		-	± 1	± 2	$\mu \mathrm{A}$
Control Feedthrough (Trimmed)	$\mathrm{R}_{\mathbb{I}}=\mathrm{R}_{\text {OUT }}=36 \mathrm{k} \Omega, \mathrm{A}_{V} \leq 0 \mathrm{~dB} \leq-30 \mathrm{~dB}$	-	750	-	$\mu \mathrm{V}$
Gain Control Range	Unity-Gain	-100	-	$+40$	dB
Control Sensitivity		-	6	-	$\mathrm{mV} / \mathrm{dB}$
Gain Scale Factor Drith		-	-3300	-	ppm $/{ }^{\circ} \mathrm{C}$
Frequency Response	Unity-Gain or Less	-	250	-	kHz
Off Isolation	At 1 kHz	$\because-$	100	-	dB
Current Gain	$+V_{c}=-V_{c}=0 \mathrm{~V}$	-0.25	0	+0.25	dB
THD (Unity-Gain)	+10dBV IN/OUT	-	0.005	0.02	\%
Noise (20kHz Bandwidth)	RE: OdBV	-	-80	-	dB
LEVEL DETECTORS (SSM-2120 ONLY)					
Dynamic Range		100	110	-	dB
Input Current Range		0.03	-	3000	$\mu A_{\text {p-p }}$
Rectilier Input Bias Current		-	4	16	nA
Output Sensitivity (At LOG AV Pin)		-	3	-	$\mathrm{mV} / \mathrm{dB}$
Output Offset Voltage		-	± 0.5	± 2	mV
Frequency Response					
$\begin{aligned} & I_{I N}=1 m A_{p-p} \\ & I_{u}=10 \mu A \end{aligned}$		-	1000 50	-	
$\begin{aligned} & I_{N}=10 \mu A_{p-p} \\ & I_{N}=1 \mu A_{p-p} \end{aligned}$		-	50 7.5	-	kHz
CONTROL AMPLIFIERS (SSM-2120 ONLY)					
Input Bias Current		-	85	175	nA
Output Drive (Max Sink Current)		5.0	7.5	-	mA
Input Offset Voltage		-	± 0.5	± 2	mV

NOTE:

1. Specifications are subject to change; consult latest data sheet.

VOLTAGE-CONTROLLED AMPLIFIERS

The two voltage-controlled amplifiers are full Class A current in/ current out devices with complementary dB / N gain control ports. The control sensitivities are $+6 \mathrm{mV} / \mathrm{dB}$ and $-6 \mathrm{mV} / \mathrm{dB}$. A resistor divider (attenuator) is used to adapt the sensitivity of an external control voltage to the range of the control port. It is best to use 200Ω or less for the attenuator resistor to ground.

VCA INPUTS

The signal inputs bedhave as virtual grounds. The input current compliance range is determined by the current into the reference current pin.

REFERENCE PIN

The reference current determines the input and output current compliance range of the VCAs. The current into the reference pin is set by connecting a resistor to $\mathrm{V}+$. The voltage at the reference pin is about two volts above V - and the current will be
$I_{\text {REF }}=\frac{\left[\left(V_{+}\right)-\left(\left(V_{-}\right)+2 V\right)\right]}{R_{\text {REF }}}$

The current consumption of the VCAs will be directly proportional to $I_{\text {REF }}$ which is nominally $200 \mu \mathrm{~A}$. The device will operate at lower current levels which will reduce the effective dynamic range of the VCAs. With a $200 \mu \mathrm{~A}$ reference current, the input and output clip points will be $\pm 400 \mu \mathrm{~A}$. In general:
$I_{\text {CLIP }}= \pm 2 I_{\text {REF }}$

VCA OUTPUTS

The VCA outputs are designed to interface directly with the virtual ground inputs of external operational amplifiers configured as current-to-voltage converters. The outputs must operate at virtual ground because of the output stage's finite output impedance. The power supplies and selected compliance range determines the values of input and output resistors needed. As an example, with $\pm 15 \mathrm{~V}$ supplies and $\pm 400 \mu \mathrm{~A}$ maximum input and output current, choose $\mathrm{R}_{\text {IN }}=\mathrm{R}_{\mathrm{OUT}}=36 \mathrm{k} \Omega$ for an output compliance range of $\pm 14.4 \mathrm{~V}$. Note that the signal path through the VCA including the output current-to-voltage converter is noninverting.

BLOCK DIAGRAM (SSM-2120)

a)

b)

VCA NOISE vs GAIN (20kHz BANDWIDTH)

VCA PERFORMANCE

Figures $1 a$ and $1 b$ show the typical THD and noise performance of the VCAs over $\pm 20 \mathrm{~dB}$ gain/attenuation. Full Class A operation provides very low THD.

TRIMMING THE VCAS

The control feedthrough (CFT) pins are optional control feedthrough null points. CFT nulling is usually required in applications such as noise gating and downward expansion. If trimming is not used, leave the CFT pins open.

Trim Procedure

1) Apply a 100 Hz sine wave to the control point attenuator. The signal peaks should correspond to the control voltages which induce the VCAs maximum intended gain and at least 30 dB of attenuation.
2) Adjust the $50 \mathrm{k} \Omega$ potentiometer for the minimum feedthrough.
(Trimmed control feedthrough is typically well under 1 mV RMS when the maximum gain is unity using $36 \mathrm{k} \Omega$ input and outputresistors.)
Applications such as compressor/limiters typically do not require control feedthrough trimming because the VCA operates at unity-gain unless the signal is large enough to initiate gain reduction. In this case the signal masks control feedthrough.
This trim is ineffective for voltage-controlled filter applications.

LEVEL DETECTION CIRCUITS

The SSM-2120 contains two independent level detection circuits. Each circuit contains a wide dynamic range full-wave rectifier, logging circuit and a unipolar drive amplifier. These circuits will accurately detect the input signal level over a 100 dB range from 30nA to 3mA peak-to-peak.

LEVEL DETECTOR THEORY OF OPERATION

Referring to the level detector block diagram of Figure 2, the REC ${ }_{\text {in }}$ input is an $A C$ virtual ground. The next block implements the full-wave rectification of the input current. This current is then fed into a logging transistor (Q_{1}) whose pair transistor $\left(Q_{2}\right)$ has a fixed collector current of $I_{\text {REF }}$. The LOG AV output is then:
FIGURE 1
$V_{\text {LOGAV }}=\frac{k T}{q} \ln \left(\frac{\left|l_{\text {IN }}\right|}{l_{\text {REF }}}\right)$

With the use of the LOG AV capacitor the output is then the \log of the average of the absolute value of I_{I}.
(The unfiltered LOG AV output has broad flat plateaus with sharp negative spikes at the zero crossing. This reduces the "work" that the averaging capacitor must do, particularly at low frequencies.)
Note: It is natural to assume that with the addition of the averaging capacitor, the LOG AV output would become the average of the \log of the absolute value of $\mathrm{I}_{\text {in }}$. However, since the capacitor forces an AC ground at the emitter of the output transistor, the capacitor charging currents are proportional to the antilog of the voltage at the base of the output transistor. Since the base voltage of the output transistor is the log of the absolute value of I, , the log and antilog terms cancel, so the capacitor becomes a linear integrator with a charging current directly proportional to the absolute value of the input current. This effectively inverts the order of the averaging and logging functions. The signal at the output therefore is the log of the average of the absolute value of I_{I}.

USING DETECTOR PINS REC IN, LOG $_{\text {AV }}$, THRESH AND CON ${ }_{\text {out }}$

When applying signals to REC $_{\text {IN }}$ (rectifier input) an input series resistor should be followed by a low leakage blocking capacitor since $R E C_{1 N}$ has a DC voltage of approximately 2.1 V above ground. Choose $R_{T N}$ for $\mathrm{a}=1.5 \mathrm{~mA}$ peak signal. For $\pm 1.5 \mathrm{~V}$ operation this corresponds to a value of $10 \mathrm{k} \Omega$.
A 1.5MS value of $R_{\text {REF }}$ from log average to -15 V will establish a $10 \mu \mathrm{~A}$ reference current in the logging transistor $\left(Q_{i}\right)$. This will bias the transistor in the middie of the detector's dynamic current range in dB to optimize dynamic range and accuracy. The LOG AV outputs are buffered and amplified by unipolar drive op amps. The $39 \mathrm{k} \Omega, 1 \mathrm{k} \Omega$ resistor network at the THRESH pin provides a gain of 40 .

An attenuator from the $\mathrm{CON}_{\text {OUT }}$ (control output) to the appropriate VCA control port establishes the control sensitivity. Use 200Ω for the attenuator resistor to ground and choose $R_{\text {con }}$ for the desired sensitivity. Care should be taken to minimize capacitive loads on the control outputs $\mathrm{CON}_{\text {out. }}$. Iflong lines or capacitive loads are present, it is best to connect the series resistor $R_{\text {CON }}$ as closely to the CON ${ }_{\text {OUT }}$ pin as possible.

DYNAMIC LEVEL DETECTOR CHARACTERISTICS

Figures 3 and 4 show the dynamic performance of the level detector to a change in signal level. The input to the detector (not shown) is series of 500 ms tone bursts at kHz in successive 10 dBV steps. The tone bursts start at a level of -60 dBV (with $R_{1 N}=10 \mathrm{k}$) and return to -60 dBV after each successive 10 dB step. Tone bursts range from -60 dBV to +10 dBV . Figure 3 shows the logarithmic level detector output. The output of the detector is $3 \mathrm{mV} / \mathrm{dB}$ at LOG AV and the amplifier gain is 40 which yields $120 \mathrm{mV} / \mathrm{dB}$. Thus, the output at CON out is seen to increase by 1.2 V for each 10 dBV increase in input level.
DYNAMIC ATTACK AND DECAY RATES
Figure 4 shows the output levels overlayed using a storage

FIGURE 3: Detector Output

FIGURE 4: Overlayed Detector Output
scope. The attack rate is determined by the step size and the value of C_{AV}. The attack time to final value is a function of the step size increase. The chart of Figure 5 shows the values of total settling times to within 5, 3,2 and 1dB of final value with $C_{A V}=10 \mu F$. When step sizes exceed 40 dB , the increase in settling time for larger steps is negligible. To calculate the attack time to final value for any value of C_{AV}, simply multiply the value in the chart by $\mathrm{C}_{\mathrm{AV}} / 10 \mu \mathrm{~F}$.
The decay rates are linear ramps that are dependent on the current out of the LOG AV pin (set by $R_{\text {REF }}$) and the value of $C_{A V}$. The integration or decay time of the circuit is derived from the formula:

Decrementation Rate (in dB / s) $=\frac{\text { REF } \times 333}{\mathrm{C}_{\mathrm{AV}}}$

	5 dB	3 dB	2 dB	1 dB
10 dB Step	$11.28_{\mu \mathrm{s}}$	21.46	30.19	46.09
20 dB Step	16.65	26.83	35.56	51.46
30 dB Step	18.15	28.39	37.06	52.96
40 dB Step	18.61	27.79	37.52	53.42
50 dB Step			$(+144 \mu \mathrm{~s})$	
60 dB Step			$(+46 \mu \mathrm{~s})$	

FIGURE 5: Settling Time $\left(t_{S}\right)$ for $C_{A V}=10 \mu F, t_{S}{ }^{\prime}=t_{S}\left(C_{A V}\right)$ $10 \mu \mathrm{~F}$)

FIGURE 6: Noise Gate/Downward Expander Control Circuit and Typical Response

FIGURE 7: Compressor/Limiter Control Circuit and Typical Response

APPLICATIONS

The following applications for the SSM-2120 use both the VCAs and level detectors in conjunction to assimilate a variety of funetions.
The first section describes the arrangement of the threshold control in each control circuit configuration. These control circuits form the foundation for the applications to follow which include the downward expander, compressor/limiter and compandor.

THRESHOLD CONTROL

Figure 6a shows the control circuit for a typical downward expander while Figure 6b shows a typical control curve. Here, the threshold potentiometer adjusts V_{T} to provide a negative unipo-
lar control output. This is typically used in noise gate, downward expander, and dynamic filter applications. This potentiometer is used in all applications to control the signal level versus control voltage characteristics.
in the noise gate, downward expander and compressor/limiter applications, this potentiometer will establish the onset of the control action. The sensitivity of the control action depends on the value of R_{T}.
For a positive unipolar control output add two diodes as shown in Figure 7a. This is useful in compressor/limiter applications. Figure 7 b shows a typical response.
Bipolar control outputs can be realized by adding a resistor from the op amp output to $V+$. This is useful in compandor circuits as

FIGURE 8: Compandor Control Circuit and Typical Curves
a) CONTROL CIRCUIT

b)

FIGURE 9: Control Circuit for Stereo Compressor/Limiter. with Noise Gating and Input/Output Curve
shown in Figure 8a, with its response in Figure 8b. The value of the resistor $R_{p V}$ will determine the maximum output from the control amplifier.

STEREO COMPRESSOR/LIMITER

The two control circuits of Figures 6 and 7 can be used in conjunction to produce composite control voltages. Figures $9 a$ and 9 b show this type of circuit and transfer function for a stereo
compressor/limiter which also acts as a downward expander for noise gating. The output noise in the absence of a signal will be dependent on the noise of the current-to-voltage converter amplifier if the expansion ratio is high enough.
As discussed in the Threshold Control section, the use of the control circuit of Figure 5, including the $R_{P V}$ to $V+$ and two diodes, yields positive unipolar control outputs.

FIGURE 10: Companding Noise Reduction System

COMPANDING NOISE REDUCTION SYSTEM

A complete companding noise reduction system is shown in Figure 10. Normally, to obtain an overall gain of unity, the value of R_{C} is equal to R_{E}. The values of $R_{C / E}$ will determine the compression/expansion ratio.
Table 1 shows compression/expansion ratios ranging from $1.5: 1$ to full limiting with the corresponding values of $R_{\mathrm{C} / E^{\prime}}$
An example of a $2: 1$ compression/expansion ratio is plotted in Figure 11. Note that signal compression increases gain for low level signals and reduces gain for high levels while expansion does the reverse. The net result for the system is the same as the original input signal except that it has been compressed before being sent to a given medium and expanded after recovery. The compression/expansion ratio needed depends on the medium being used. As an extreme example, a household tape player would require a higher compression/expansion ratio than a professional stereo system.

FIGURE 11: Companding Noise Reduction with 2:1 Compression/Expansion Ratio

TABLE 1

INPUT SIGNAL INCREASE (dB)	$\begin{aligned} & \text { GAIN } \\ & \text { (REDUCTION } \\ & \text { OR INCREASE) } \\ & \text { (dB) } \end{aligned}$	```COMPRESSOR ONLY OUTPUT SIGNAL INCREASE (dB)```	```EXPANDER ONLY OUTPUT SIGNAL INCREASE (dB)```	COMPRESSION EXPANSION RATIO	$\mathrm{R}_{\text {CIE }} \Omega$	$\Delta V_{\text {conthol }}{ }^{-}$ (mV/dB)
20	6.67	13.33	22.67	$\because \quad \therefore 1.5: 1$	11,800	2.0
20	10.00	10.00	30.00	2:1	7,800	3.0
20	13.33	6.67	33.33	3.1	5,800	4.0
20	15.00	5.00	35.00	4:1	5,133	4.5
20	16.00	4.00	36.00	$5: 1$	4,800	4.8
20	17.33	2.67	37.33	7.5:4	4,415	5.2
20	18.00	2.00	38.00	10:1	4,244	5.4
20	20.00	0	40.00	AGC\%Limiter	3,800	6.0
- AGC for Compre	Only					

FIGURE 12: Dynamic Noise Filter Circuit

DYNAMIC FILTER

Figure 12 shows a control circuit for a dynamic filter capable of single ended (non-encode/decode) noise reduction. Such circuits usually suffer from a loss of high-frequency content at low signal levels because their control circuits detect the absolute amount of highs present in the signal. This circuit, however, measures wideband level as well as high-frequency band level to produce a composite control signal combined in a 1:2 ratio respectively. The upper detector senses wideband signals with a cutoff of 20 Hz while the lower detector has a 5 kHz cutoff to sense only high-frequency band signals. This approach allows very good noise masking with a minimum loss of "highs" when the signal level goes below the threshold.
a) $\mathbf{V}_{\text {THRESH }}$ at V_{+}

b) $V_{\text {thesesh }}$ Centered

c) $V_{\text {THRESH }}$ at $V-$

Figures 13a-c show the filter's 3dB frequency response with the threshold potentiometer at V_{+}, centered, and $V-$. Data was taken by applying a 300 Hz signal to the wideband detector and a 20 kHz signal to the high-frequency band detector simultaneously. These figures correspond to filter characteristics for $50 \mathrm{~dB}, 70 \mathrm{~dB}$ and 90 dB dynamic range program source material, respectively. The system could thus treat signals from anything ranging from $1 / 4^{\prime \prime}$ magnetic tape to high-performance compact disc players.

Note that in Figure 13a the control circuit is designed so that the minimum cutoff frequency is about 1 kHz . This results from the control circuit detecting the noise floor of the source material.
Dynamic filtering limits the signal bandwidth to less than 1 kHz unless enough highs are detected in the signal to cover the noise floor in the mid- and high-frequency range. In this case the filter opens to pass more of the audio band as more highs are detected. The filter's bandwidth can extend to 50 kHz with a nominal signal level at the input. At other signal levels with varying high-frequency content; the filter will close to the required bandwidth. Here, noise outside the band is removed while the perceived noise is masked by other signals within the band. Even in this system, however, a certain amount of mid- and high-frequency components will be lost, especially during transients at very low signal levels. This circuit does not address low frequency noise such as "hum" and "rumble."

FIGURE 14: Dynamic Filter with Downward Expander

DYNAMIC FILTER WITH DOWNWARD EXPANDER

A composite single-ended noise reduction system can be realized by a combination of dynamic filtering and a downward expander. As shown in Figure 14, the output from the wideband detector can also be connected to the $+\mathrm{V}_{\mathrm{C}}$ control port of the second VCA which is connected in series with the sliding filter. This will act as a downward expander with a threshoid that tracks that of the filter. Although both of these techniques are used for noise reduction, each alone will pass appreciable amounts of noise under some conditions. When used together, both contribute distinct advantages while compensating for each other's deficiencies.

Downward expansion uses a VCA controlled by the level detector. This section maintains dynamic range integrity for all levels above the user adjustable threshold level. As the input level decreases below the threshold, gain reduction occurs at an increasing rate (see Figure 15). This technique reduces audible noise in fade outs or low level signal passages by keeping the standing noise floor well below the program material.
This technique by itself is less effective for signals with predominantly low frequency content such as a bass solo where wideband frequency noise would be heard at full level. Also, since the level detector has a time constant for signal averaging, percussive material can modulate the noise floor causing a "pumping" or "breathing" effect.

The dynamic filter and downward expander techniques used together can be employed more subtly to achieve a given level of noise reduction than would be required if used individually. Up to 30 dB of noise reduction can be realized while preserving the crisp highs with a minimum of transient side effects.

FIGURE 15: Typical Downward Expander I/O Characteristics at-30dB Threshold Level (1:1.5 Ratio)

FIGURE 16: SSM-2122 Basic Connection (Control Ports at OV)

FADER AUTOMATION

The SSM-2120 can be used in fader automation systems to serve two channels. The inverting control port is connected through an attenuator to the VCA control voltage source. The noninverting control port is connected to a control circuit (such as Figure 6) which senses the input signal level to the VCA. Above the threshold voltage, which can be set quite low (for example -60dBV), the VCA operates at its programmed gain. Below this threshold the VCA will downward expand at a rate determined by the $+\mathrm{V}_{\mathrm{C}}$ control port attenuator. By keeping the release time constant in the 10 to 25 ms range, the modulation of the VCA standing noise floor (-80 dB at unity-gain), can be kept inaudibly low.
The SSM-2300 8-channel multiplexed sample-and-hold IC makes an excellent controller for VCAs in automation systems.

Figure 16 shows the basic connection for the SSM-2122 operating as a unity-gain VCA with its noninverting control ports grounded and access to the inverting control ports. This is typical for fader automation applications. Since this device is a pinout option of the SSM-2120, the VCAs will behave exactly as described earlier in the VCA section.
The SSM-2122 can also be used with two or more op amps to implement complex voltage-controlled filter functions. Biquad and state-variable two-pole filters offering lowpass, bandpass and highpass outputs can be realized. Higher order filters can also be formed by connecting two or more such stages in series.

FEATURES

- Nolse Sequencer and Auto-Balance Circuits are Contained On-Chip
- Auto-Balance On/Off Control
- 3- or 4-Channel Pro-Loglc Mode (Surround Channel Defeat)
- Selectable Center Channel Modes - Normal, Wideband, Phantom, Off
- 3- or 4-Channel Nolse Sequencer Option
- Selectable Nolse Sequencer Time Interval
- Programmable Nolse Generator Speaker Sequence
- Direct Path Bypass (Normal 2-Channel Stereo Mode)
- Wide Channel Separatlon (Any Channel to Another)
- Wide Dynamic Range ...100dB Typ
- Low Total Harmonic Distortion 0.025% Typ
- Avaliable in a 48-Pin Plastic DIP
- CMOS and TTL Compatible Control Logic

APPLICATIONS

- Direct Vlew and Projection TV
- Integrated A/V Ampliflers
- Laserdisc and CD-V Players
- Video Cassette Recorders
- Stand-Alone Surround Decoders

GENERAL DESCRIPTION

The SSM-2125 is a Dolby Surround Pro-Logic Decoder developed to provide multi-channel outputs from Dolby Surround. encoded sources.
Over 2000 major films and an increasing amount of broadcast programming are available in Dolby Surround. Surround encoding is preserved in the stereo audio tracks of normal videodiscs, video cassettes, and television broadcasts, permitting the decoding to multi-channel audio in the home.
Major design consideration of the SSM-2125 are excellent audio performance and a high level of integration. In addition to the Adaptive Matrix and Center Mode Control, also included on-chip are the Automatic Balance Control and Noise Sequencer functions. A complete Pro-Logic system can be realized using the SSM-2125 and few external components. Using PMi's extensive experience in the design of professional audio integrated circuits, the SSM-2125 offers typical 100 dB dynamic range and 0.025% THD. A direct path bypass mode allows normal stereo. operation with high fidelity without the need for external switching or parallel signal paths.
The SSM-2125 is subject to final approval by Doiby Laboratories Licensing Corporation, and will be available only to licensees of Dolby Licensing Corporation, San Francisco, California from whom licensing and application information must be obtained.

BLOCK DIAGRAM, SHOWING PMI IMPLEMENTED SECTIONS

[^5]ELECTRICAL CHARACTERISTICS at: $V_{S}=12 \mathrm{~V} ; T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{I N}=1 \mathrm{kHz}$ at Dolby level.

\therefore		SSM-2125			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Channel Separation:					
Left	L Input $\quad \therefore$	25	35	-	
Right	A Input	25	35	-	
Center	C Input	25	35	\cdots	d8
Surround	S Input	25	35	-	
Total Harmonic Distortion:					
Left	L Channel	-	0.025	0.1	
Right	A Channel	-	0.025	0.1	\%
Center	C Channel	-	0.025	0.1	\%
Surround	S Channel	-	0.025	0.1	
Signal-to-Noise Ratio:					
Left		80	85	-	
Right	$\mathrm{R}_{5}=0, \mathrm{CCIR} / \mathrm{ARM}$	80	85	$\cdots-$	dB
Center		80	85	-	dB
Surround		80	85	-	
Headroom:					
Left		16	18	-	
Fight	$V_{C C}=9 V_{1} 1 \%$ THD	16	18	-	dB
Center		16	18	-	dB
Surround		16	18	-	
Auto Balance Range		± 3	± 4	-	dB
Noise Sequencing Channel Duration	$\mathrm{Cosec}_{\text {ose }}=1 \mu \mathrm{~F}$	-	2	-	sec
Bypass Mode Dynamic Range		-	100	-	dB
Dolby Level (Input)(Output)	L, R		300		
	C.S		212		$\mathrm{mV}_{\text {RMS }}$
	All Channels		300		

Specifications subject to change; consult latest data sheet.

PACKAGE DIAGRAM - 48-PIN PLASTIC DIP*

This advance product information is based on proposed specifications. Final specifications may vary. Please contact local sales office or factory for final data sheet. © PMI 1990

SSM-2015 LOW NOISE MICROPHONE PREAMPLIFIER

Precision Monolithics Inc.

FEATURES

- Ultra Low Voltage Noise \qquad $1.3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Wide Bandwidth \qquad $700 \mathrm{kHz} @$ G = 100
- High Slew Rate \qquad $8 \mathrm{~V} / \mu \mathrm{s}$
- Very Low Harmonic Distortion \qquad 0.007% @ G = 100
- Excellent CMR \qquad 0.007\% @ 100dB
- True Differential "Instrumentation" Type Inputs
- Programmable Input Stage Optimizes e_{n} vs $R_{i N}$
- Low Cost

ORDERING INFORMATION

PACKAGE	OPERATING TEMPERATURE RANGE
PLASTIC 14-PIN	
SSM2015P	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

The SSM-2015 is an ultra-low noise audio preamplifier particularly suited to microphone preamplification. Gains from 10 to over 2000 can be selected with wide bandwidth and low distortion over the full gain range.

The very low voltage noise performance ($1.3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$) of the SSM-2015 is enhanced by a programmable input stage which allows overall noise to be optimized for source impedances of up to $4 \mathrm{k} \Omega$.

The SSM-2015's true differential inputs with high commonmode rejection provide easy interfacing to flotation transducers
such as balanced microphone outputs, as well as single ended devices.

The SSM-2015 also offers high slew rate of about $8 \mathrm{~V} / \mu$ s and full DC coupling without any crossover distortion.

This device is packaged in a 14-pin epoxy DIP and is guaranteed over the operating temperature range of $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

PIN CONNECTION

ABSOLUTE MAXIMUM RATINGS			
Operating Temperature Range $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$			
Junction Temperature .. +150C			
Storage Temperature \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead Temperature Range (Soldering, 60 sec) \qquad $+300^{\circ} \mathrm{C}$			
PACKAGE TYPE	θ_{14} ((Note 1)	$\theta_{\text {jc }}$	UNITS
14-Pin Plastic DIP (P)	76	33	${ }^{\circ} \mathrm{CNW}$

NOTE:

1. $\Theta_{j A}$ is specified for worst case mounting conditions, i.e., $\Theta_{j A}$ is specified for device in socket for P-DIP package.

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, R_{B I A S}=33 \mathrm{k} \Omega$, unless otherwise noted.

NOTES:

Specifications subject to change; consult latest data sheet.

1. Parameter is sample tested to maximum limits.
2. Output is protected from short circuits to ground or either supply.

FIGURE 1: Typical Application

APPLICATIONS INFORMATION

PRINCIPLE OF OPERATION

Figure 1 shows a typical application for the SSM-2015. This device operates as a true differential amplifier with feedback returned directly to the emitters of the input stage transistors by R_{1}. This system produces both optimum noise and commonmode rejection while retaining a very high input impedance at both input terminals. An internal feedback loop maintains the input stage current at a value controlled by an external resistor $\left(R_{81 A S}\right)$ from pin 14 to V-. This provides a programmability function which allows noise to be optimized for source impedances of up to $4 \mathrm{k} \Omega$.

GAIN SETTING

The nominal gain of the SSM-2015 is given by:
$G \propto \frac{R_{1}+R_{2}}{R_{G}}+\frac{R_{1}+R_{2}}{8 k \Omega}+1$
or $=\frac{20 k \Omega}{R_{G}}+3.5 \quad$ For $R_{1}, R_{2}=10 \mathrm{k} \Omega$
R_{1} and F_{2} should be equal to $10 \mathrm{k} \Omega$ for best results (see Figure 1). It is vital that good quality resistors be used in the gain setting network, since low quality types (notably carbon composition) can generate significant amounts of distortion and, under some conditions, low frequency noise. The SSM-2015 will function at gains down to 3.5, but the best performance is obtained at gains above 10. Table 1 gives R_{G} values for most commonly used gains.

TABLE 1: R_{Q} Values for Commonly Used Gains
$R_{G}=\frac{R_{1}+R_{2}}{G-3.5}$

GAIN	$\mathbf{R}_{\mathbf{G}}$	ERROR
10	$3 \mathrm{k} \Omega$	+0.14 dB
50	430Ω	+0.002 dB
100	200Ω	+0.3 dB
500	39Ω	+0.28 dB
1000	20Ω	+0.03 dB

FREQUENCYCOMPENSATION

Referring to Figure 1, $\mathrm{C}_{3}(50 \mathrm{pF})$ provides compensation for the input stage current regulator, while C_{1} and C_{2} compensate the overall amplifier. The latter two depend on the value of $\mathrm{R}_{\text {BIAS }}$ chosen. Table 2 shows the recommended values for C_{1} and C_{2} at various $\mathrm{R}_{\text {BIAS }}$ levels. These values are valid for all gain settings.

TABLE 2: Recommended Compensation Values

$\mathrm{R}_{\text {BIAS }}$	C_{1}	C_{2}
$27 \mathrm{k} \Omega-47 \mathrm{k} \Omega$	15 pF	15 pF
$47 \mathrm{k} \Omega-68 \mathrm{k} \Omega$	15 pF	10 pF
$68 \mathrm{k} \Omega-150 \mathrm{k} \Omega$	30 pF	5 pF

The SSM-2015 has a bandwidth of at least 70kHz under worst case conditions ($G=1000, R_{B \mid A S}=150 \mathrm{k} \Omega$) and considerably greater at higher set currents and lower gains. This excellent performance is supplemented by a highly symmetric slew rate for optimum large signal audio performance. The SSM-20.15 provides stable operation with load capacitances of up to 150 pF ; larger capacitances should be decoupled with a 100Ω resistor in series with the output (R_{1} in Figure 1 should remain connected to pin 3).

FIGURE 2: Optimum $R_{B I A S}$ vs. Source Resistance

NOISE

The programmability of the SSM-2015 provides close to optimum performance for source impedances of up to $4 \mathrm{k} \Omega$, and is within 1 dB of the theoretical minimum value between 500Ω and $2.5 \mathrm{k} \Omega$.

Figure 2 shows the recommended bias resistor ($\mathrm{R}_{\mathrm{BIAS}}$) versus source impedance, for balanced or single-ended inputs.

INPUTS

Although the SSM-2015 inputs are fully floating, care must be exercised to ensure that both inputs have a DC bias connection capable of maintaining them within the input common-mode range. The usual method of achieving this is to ground one side of the transducer as in Figure 3(a), but an alternative way is to float the transducer and use two resistors to set the bias point as in Figure 3(b). The value of these resistors can be up to $10 \mathrm{k} \Omega$, but they should be kept as small as possible to limit commonmode noise. Noise generated in the resistors themselves is negligible since it is attenuated by the transducer impedance. Balanced transducers give the best noise immunity, and interface directly as in Figure 3(c).

TRIMMING

The gain of the SSM-2015 can be easily trimmed by adjustment of R_{G}. However, two further trims may be desirable: Offset Voltage and Common-mode Rejection, although the SSM-2015 provides excellent untrimmed performance in both respects.

FIGURE 3: Three Ways of Interfacing Transducers for High Noise Immunity
(a) Single Ended
(b) Pseudo Differential
(c) True Differential

FIGURE 4: Trimming the SSM-2015

Figure 4 shows the trimming method for both parameters.
V_{R}, is the CMR trim and should be adjusted for minimum output with an $8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ amplitude 60 Hz Sine Wave common to both inputs.
$V_{\mathrm{A} 2}$ is the offset voltage trim, and should be selected from Table 3. The offset trim should follow the CMR trim, since there is a small (non-reciprocal) interaction.

The offset trim can also be used to null out the gain control feedthrough. The output offset at low gains is determined by matching of the feedback resistors while at high gains it is determined by the matching of the input resistors. If the gain setting is changed rapidly, the output shift can cause an (audible) click or thump. To reduce or eliminate this, the offset at high gains is adjusted to be equal to the offset at low gains.

TABLE 3: Recommended Values for the Offset Voltage Trim

	$\mathrm{R}_{\text {BIAS }}$		
	27kS-47k Ω	47kS-68kS	68k Ω-150k Ω
$\begin{aligned} & V_{\mathrm{A} 2^{\prime}} \\ & G=10 \end{aligned}$	500k Ω	250ks	250k Ω
$\begin{aligned} & V_{\mathrm{A}^{\prime}} \\ & \mathrm{G}^{\prime}=100 \end{aligned}$	500k	100ks	100k ${ }^{\text {a }}$
$\begin{aligned} & V_{\mathrm{R}^{\prime}} \\ & G=1000 \end{aligned}$	250k Ω	100ks	$50 \mathrm{k} \Omega$

PHANTOM POWER

A recommended circuit for phantom microphone powering is shown in Figure 5. Z_{1} through Z_{4} provide transient overvoltage protection for the SSM-2015 whenever microphones are plugged in and out.

FIGURE 5: SSM-2015 with Phantom Power

FEATURES

- Ultra Low Voltage Noise \qquad $800 \mathrm{pV} / \sqrt{\mathrm{Hz}}$ Typ
- High Slew Rate \qquad 10V/us Typ
- Very Low Harmonic Distortion
@ G $=1000$ 0.009\% Typ
- Wide Bandwidth \qquad $@ G=1000650 k H z$ Typ
- Very Wide Supply Voltage Range \qquad $\pm 9 \mathrm{~V}$ to $\pm 36 \mathrm{~V}$
- High Output Drive Capability $\pm 40 \mathrm{~mA}$ Min
- High Common-Mode Rejection 100dB Typ
- Low Cost

GENERAL DESCRIPTION

The SSM-2016 is an ultra low noise, low distortion differential audio preamplifier. The input referred noise of the SSM-2016 is about $800 \mathrm{pV} / \sqrt{\mathrm{Hz}}$ which will result in a noise figure of 1 dB when operated with a 150Ω source impedance. This ensures that a large number of inputs can be paralleled without seriously degrading the signal-to-noise ratio. In addition, this device provides exceptionally low harmonic distortion of only 0.009% ($G=1000, f=1 \mathrm{kHz}$) Typ.
Fabricated on a high voltage process, the SSM-2016 is capable of operating from a wide supply voltage range of $\pm 9 \mathrm{~V}$ to $\pm 36 \mathrm{~V}$. A

Continued

PIN CONNECTIONS

BLOCK DIAGRAM

[^6]GENERAL DESCRIPTION Continued
The SSM-2016 can source or sink a minimum of 40 mA allowing a jack-field to be driven directly.
At low gains, the SSM-2016 offers a bandwidth of about 1 MHz and 650 kHz at 60 dB of gain. Slew rate is typically $10 \mathrm{~V} / \mu \mathrm{s}$ at all gains.
The SSM-2016 is packaged in a 16-pin epoxy DIP and performance and characteristics are guarante日d over the operating temperature range of $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage ... $\pm 38 \mathrm{~V}$
Recommended Supply
Voltage Range \qquad $\pm 9 \mathrm{~V}$ to $\pm 36 \mathrm{~V}$

Current Into Any Pin
(Except Pins 2, 11, and 15),... 40mA
Lead Temperature (Soldering, 60 sec) $300^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation ...2W
Short-Circuit Duration (Note 1) Indefinite
Operating Temperature Range $-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

PACKAGE TYPE	Θ_{IA} (Note 2)	Θ_{JC}	UNITS
16-Pin Plastic DIP (P)	76	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

1. Short-circuit duration is indefinite, provided dissipation limit is not exceeded.
2. θ_{jA} is specified for worst case mounting conditions, li. $\hat{\theta}, \Theta_{\mathrm{jA}}$ is specified for device in socket for P-DIP package.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}_{2}=5 \mathrm{k} \Omega, \mathrm{R}_{3}=\mathrm{R}_{4}=2 \mathrm{k} \Omega, \mathrm{T}_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}_{2}=5 \mathrm{k} \Omega, \mathrm{R}_{3}=\mathrm{R}_{4}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Continued

			SSM-2016			
PARAMETER $\quad \therefore \quad \cdots$	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Common-Mode Input Impedance	$\mathrm{R}_{\text {INEM }}$		-	20	-	$\mathrm{M} \Omega$
Differential-Mode Input Impedance		$\mathbf{G}=1000$	-	0.3	-	
		$G=100$	-	3	-	$M \Omega$
		$\mathrm{G}=10$	-	10	-	
Output Voltage Swing (Note 1)	V_{0}	$R_{L}=2 k \Omega$	± 15	± 17	-	V
		$\mathrm{R}_{\mathrm{L}}=600 \mathrm{~S}_{1} \mathrm{~V}_{\mathrm{S}}$	± 15	± 17	- -	v
Output Current (Note 3)	Iout	Source	40	70	-	mA
		Sink	40	70	-	
Supply Current	$\mathrm{I}_{S Y}$	$\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$	10	12	16	mA
Error From Gain Equation			-	0.1	0.3	dB

NOTES:

Specifications subject to change; consult latest data sheet.

1. Sample tested.
2. Bandwidth will be slew-rate limited at high output levels.
3. Output is protected from short circuits to ground or either supply.

FIGURE 1: Typical Preamplifier Amplification

APPLICATIONS INFORMATION

PRINCIPLE OF OPERATION

The SSM-2016 operates as a true differential amplifier with feedback returned directly to the emitters of the input stage transistors by R_{1} (See Figure 1). The differential pair is fed by a current source at the collectors and the required emitter current
is supplied by a nulling (servo) amplifier through the external resistors R_{3} and R_{4} (Figure 1). This system produces both optimum noise and common-mode rejection while retaining a very high input impedance. The internal "servo" amplifier is used to control the input stage current independently of common-mode voltage and its output is accessible via pin 12.

GAIN SETTING

The nominal gain of the SSM-2016 is given by:
$G=\frac{R_{1}+R_{2}}{R_{g}}+\frac{R_{1}+R_{2}}{R_{3}+R_{4}}+1$
Or
$G=\frac{10 \mathrm{k} \Omega}{R_{9}}+3.5$ For $R_{1}=\dot{R}_{2}=5 \mathrm{k} \Omega, R_{3}=R_{4}=2 \mathrm{k} \Omega$
R_{1} and R_{2} should be equal to $5 \mathrm{k} \Omega$ for best results. It is vital that good quality resistors be used in the gain setting network, since low quality types (notably carbon composition) can generate significant amounts of distortion and, under some conditions, low frequency noise.
The SSM-2016 is capable of operating at gains down to 3.5 at full performance. Gain range can be extended further by increasing R_{3} and R_{4} in Figure 1, but at the penalty of reduced common-mode input range. Gains below 2.5 are not practical unless the negative supply voltage is increased.

Note that tolerance of $R_{1}-R_{4}$ directly affects the gain error and that good matching between $R_{1}=R_{4}$ is essential to prevent degradation of the common-mode rejection performance.
The SSM-2016 provides internal $1 \mathrm{k} \Omega$ resistors to replace R_{3} and R_{4} in applications where distortion is not too critical.
FREQUENCY COMPENSATION
The SSM-2016's internal "servo" amplifier is compensated by C_{3}, while C_{1} and C_{2} (see Figure 1) compensate the overall amplifier. The values shown maintain a very wide bandwidth with a good symmetrical slew rate. If desired, the bandwidth can be reduced by increasing the value of C_{1}.

NOISE PERFORMANCE

The SSM-2016's input referred noise is $0.11 \mu \mathrm{~V}_{\mathrm{FMS}}$ (20 kHz bandwidth) at 60 dB of gain, $0.2 \mu \mathrm{~V}_{\mathrm{RMS}}$ at 40 dB , and $0.8 \mu \mathrm{~V}_{\mathrm{RMS}}$ at 20 dB . The apparent increase at low gains is due to noise incurred in the feedback resistors and second stage becoming dominant. This noise is actually present at all times but becomes masked by input stage noise as the gain is increased.
The SSM-2016 is optimized for source impedances of $1 \mathrm{k} \Omega$ or less and under these conditions, the noise performance is equal to the best discrete component designs. Considering that a "standard" microphone with impedance of 150Ω generates $1.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of thermal noise, the SSM-2016's $800 \mathrm{pV} / \sqrt{\mathrm{Hz}}$ of voltage noise or the corresponding noise figure of typically 1 dB make the device virtually transparent to the user.

In applications where higher source impedances than $1 \mathrm{k} \Omega$ are desired, the SSM-2015 preamplifier is recommended.
Another source of noise degradation is the chip's total power dissipation, since any increase in temperature will increase the noise. This effect is more pronounced at higher gains. As a result, the SSM-2016 uses a copper lead-frame package which greatly helps the power dissipation and the noise performance. The best noise performance of the SSM-2016 can be achieved at low supply voltages while driving light loads.

TOTAL HARMONIC DISTORTION

Figures 2-5 show the distortion behavior of SSM-2016. All measurements were taken at a $10 \mathrm{~V}_{\mathrm{AMS}}$ output to ensure a true "worst case" condition. No crossover distortion is observed at lower ouput levels. At 20dB of gain (Figure 2) total harmonic distortion (plus noise) is well below 0.01% at all audio frequencies. At 40dB of gain (Figure 3) some loading effects are evident, especially at higher frequencies, but the overall THD is still very low. The measurements at 60dB of gain (Figure 4) are a little misleading because the noise floor is at an equivalent level of 0.0085% at this gain. In fact, the real distortion components are not greatly increased from the 40dB case.
Figure 5 shows the intermodulation distortion performance of the SSM-2016. A basic SMPTE type test was performed with the main gerierator swept from 2.5 kHz to 20 kHz . The 60 dB reading is once more mostly noise.

FIGURE 2

FIGURE 3

FIGURE 4

DRIVE CAPABILITY

Fabricated on a high voltage process, the SSM-2016 is capable of operating from $\pm 9 \mathrm{~V}$ to $\pm 36 \mathrm{~V}$ supplies. In addition, the powerful output stage is designed to drive a jack-field directly. The SSM2016 is capable of driving a $10 \mathrm{~V}_{\text {RMS }}$ sine wave into 600Ω load using $\pm 18 \mathrm{~V}$ supplies. However, $\pm 20 \mathrm{~V}$ or greater supplies are recommended to give a more comfortable headroom: A copper lead-frame DIP package is used to permit 1.5W of dissipation when driving heavy loads or operating from elevated supplies.

INPUTS

The SSM-2016 offers protection diodes across the base-emitter junctions of the input transistors. These prevent accidental avalanche breakdown which could seriously degrade noise performance. Additional clamp diodes are also provided to prevent the inputs from being forced too far beyond the supplies.
Although the SSM-2016's inputs are fully floating, care must be exercised to ensure that both inputs have a DC bias connection capable of maintaining them within the input common-mode range. The usual method of achieving this is to ground one side of the transducer as in Figure 6a, but an alternative way is to float the transducer and use two resistors to set the bias point as in figure 6b. The value of these resistors can be up to $10 \mathrm{k} \Omega$, but they shouid be kept as small as possible to limit common-mode pickup. Noise contribution by resistors themselves is negligible since it is attenuated by the transducer's impedance. Balanced transducers give the best noise immunity, and interface directly as in Figure 6c.

FIGURE 5

FIGURE 6: Three Ways of Interfacing Transducers for HighNoise Immunity

FIGURE 7: SSM-2016 with Phantom Power

FIGURE 8: Trimming Circuit

PHANTOM POWERING

A typical phantom microphone powering circuit is shown in Figure $7 . Z_{1}$ through Z_{4} provide transient overvoltage protection for the SSM-2016 whenever microphones are plugged in and out.

TRIMMING

The SSM-201.6 accommodates four types of trimming: gain, high-gain offset, low-gain offiset, and common-mode rejection. All four can be accomplished with the circuits shown in Figure 8.
Gain trim on the SSM-2016 is readily accomplished by adjusting $\mathrm{R}_{\mathrm{G}} \cdot \mathrm{VR}_{1}$ adjusts the common-mode rejection, VR_{2} the high-gain
offset, and VR_{3} the low-gain offset. Common-mode rejection is best adjusted by applying an 8 Vppp 60 Hz (50 Hz in Europe) sine wave to both inputs and adjusting VR, for minimum output. Interaction is minimized by trimming the high-gain offset first, followed by the CMR and finally the low-gain offset. A two-pass trim is recommended for best results. Note that the overall gain has been reduced slightly to allow convenient values of resistors.
If the low-gain offset trim is not used, then gain control feedthrough can still be reduced by adjusting the high-gain offset to equal the low-gain offset by means of $\mathrm{VR}_{\mathbf{2}}$.

BUS SUMMING AMPLIFIER

In addition to its use as a microphone preamplifier, the SSM2016 can be used as a very low noise summing amplifier. Such a circuit is particularly useful when many medium impedance outputs are summed together to produce a high effective noise gain.
The principle of the summing amplifier is to ground the SSM2016 inputs. Under these conditions, pins 4 and 5 are AC virtual grounds sitting about 0.65 V below ground. Any current injected into these points must flow through the feedback resistor $\left(\mathbf{R}_{1}\right)$ and hence are amplified to appear in the the output Moreover, both positive (pin 5) and negative (pin 6) transfer characteristics are available simuitaneously in contrast to the usual "inverting only" configuration.

To remove the 0.65 V offset, the circuit of Figure 9 is recommended.
A_{2} forms a "servo" amplifier feeding the SSM-2016's inputs. This places pins 4 and 5 at a true DC virtual ground. R_{6} in con-: junction with C_{6} remove the voltage noise of A_{2} and in fact just about any operational amplifier will work well here since it is removed from the signal path. If the DC offset at pins 4 and 5 is not too critical, then the servo loop can be replaced by the diode biasing scheme of Figure 9 a . If AC coupling is used throughout, then pins 3 and 6 may be directly grounded.

FIGURE 9: Bus Summing Amplifier

VOLTAGE GAIN $=\frac{10 \mathrm{~kg}}{\mathrm{R}_{6}}+3.5$
*4TOPF CAP MOUHTED CLOSE TO PACKAGE

FIGURE 10: Typical Connection for Breadboarding Purposes

FEATURES

- Excellent Nolse Performance \qquad $750 p v \sqrt{\mathrm{~Hz}}$ or 1dB Nolse Figure
- Ultra-Low THD \qquad < 0.01\% @ G = 1000 Over the Full Audio Band
- Wide Bandwldth \qquad 250kHz @ G = 100
- High Slaw Rate \qquad $10 \mathrm{~V} / \mathrm{s}$
- True Differential Inputs
- 8-PIn Minl-DIP with Only One External Component Required
- Very Low Cost
- Extended Industrial Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Galn Range of OdB to Over 60dB
- Sub-Audio 1/f Noise Corner

APPLICATIONS

- Audio Mix Consoles
- Intercom/Paging Systems
- Two-Way Radio
- Sonar
- Digital Audlo Systems

ORDERING INFORMATION

PACKAGE	OPERATING TEMPERATURE PLASTIC R-PIN
SSM2017P	XIND

${ }^{*} X$ IND $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PIN CONNECTIONS

8-PIN
PLASTIC DIP (P-Suffix)

ADVANCE PRODUCT INFORMATION

GENERAL DESCRIPTION

The SSM-2017 is PMI's latest generation audio preamplifier combining SSM preamplifier design expertise with advanced processing. The result is excellent audio performance from a self-contained 8 -pin mini-DIP device, requiring only one external gain-set resistor or potentiometer. The SSM-2017 is further enhanced by its unity-gain stability.
Key specifications include ultra-low noise (1dB noise figure) and THD ($<0.01 \%$ at $G=1000$), complemented by wide bandwidth and high slew rate. The SSM-2017 can be operated by supply vottages from $\pm 9 \mathrm{~V}$ to $\pm 25 \mathrm{~V}$.
Applications for this low cost device include microphone preamplifiers and bus summing amplifiers in professional and consumer audio equipment, sonar, and other applications requiring a low-noise instrumentation amplifier with high gain capability.

TYPICAL APPLICATION

FEATURES

- "Clickless" Bllateral Audio Switching
- Guaranteed "Break-Before-Make" Switching
- Low Distortion ... 0.003\% Typ
- Low Nolse .. 1nV/ $\sqrt{\mathrm{Hz}}$
- Superb OFF-Isolation .. 120dB Typ
- Low ON-Resistance .. 60Ω Typ
- Wide Signal Range:
$V_{S}= \pm 18 \mathrm{~V}$ 10V RMS
- Wide Power Supply Range $\pm 20 \mathrm{~V}$ Max
- Avallable in Dice Form

ORDERING INFORMATION

PACKAGE		operating TEMPERATURE RANGE
PLASTIC 14-PIN	$\begin{gathered} \mathrm{SOL} \\ 16-\mathrm{PIN} \end{gathered}$	
SSM2402P	SSM2402S	XIND*
SSM2412P	SSM2412S	XIND*

${ }^{*} \mathrm{XIND}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

The SSM-2402/2412 are dual analog switches designed specifically for high-performance audio applications. Distortion and noise are negligible over the full audio operating range of 20 Hz to 20 kHz at signal levels of up to $10 \mathrm{~V}_{\text {RMS }}$. The SSM-2402/2412 offer a monolithic integrated alternative to expensive and noisy relays or complex discrete JFET circuits. Unlike conventional general-purpose CMOS switches, the SSM-2402/2412 provide superb fidelity without audio "clicks" during switching.
Conventional TTL or CMOS logic can be used to control the switch state. No external pull-up resistors are needed. A "T" configuration provides superb OFF-isolation and true bilateral operation. The analog inputs and outputs are protected against overload and overvoltage.

An important feature is the guaranteed "break-before-make" for all units, even IC-to-IC. In large systems with multiple switching channels, all separate switching units must open before any switch goes into the ON-state. With the SSM-2402/2412, you can be certain that multiple circuits will all break-before-make.

The SSM-2402/2412 represent a significant step forward in audio switching technology. Distortion and switching noise are significantly reduced in the new SSM-2402/2412 bipolar-JFET switches relative to CMOS switching technology. Based on a
new circuit topology that optimizes audio performance, the SSM-2402/2412 make use of a proprietary bipolar-JFET process with thin-film resistor network capability. Nitride capacitors, which are very area efficient, are used for the proprietary ramp generator that controls the switch resistance transition. Very wide bandwidth amplifiers control the gate-to-source voltage over the full audio operating range for each switch. The ONresistance is very constant with changes in signal amplitude and frequency, thus distortion is very low, less than 0.01% Max.
The SSM-2402 is the first analog switch truly optimized for highperformance audio applications. For broadcasting and other switching applications which require a faster switching time, we recommend the SSM-2412 - a dual analog switch with one-third of the switching time of the SSM-2402.

PIN CONNECTIONS

16-PIN SOL
(S-Suffix)

[^7]
FUNCTIONAL DIAGRAM

TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Supply Voltage Range $\pm 20 \mathrm{~V}$
Analog Input Voltage Range
Continuous $\mathrm{V}-+3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq \mathrm{V}+-3.5 \mathrm{~V}$
Maximum Current Through Switch 20mA
Logic Input Voltage Range V+Supply to - 2 V
V+Supply to Ground .. +36 V
V-Supply to Ground ..-20V
V_{A} to V-Supply .. +36 V

PACKAGE TYPE	$\theta_{\text {AA }}$ (NOTE 1)	$\theta_{\text {IC }}$	UNITS
14-Pin Piastic DIP (P)	76	33	${ }^{\circ} \mathrm{C} N$
16-PIn SOL (S)		92	27

NOTE:

1. Θ_{JA} is specifled for worst case mounting conditions, l.e., $\theta_{j A}$ is specified for device in socket for P-DIP package; $\Theta_{1 A}$ Is specified for device sofdered to printed circuit board for SOL package.

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 18 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ OPEN, and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted. All specifications, tables, graphs, and application data apply to both the SSM-2402 and SSM-2412; unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN	SSM-2402/ TYP	MAX	UNITS
Positive Supply Current	$+_{\text {S }}^{\text {S }}$	$\begin{aligned} & V_{1 L}=0.8 \mathrm{~V}, 2.0 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$	-	6.0	7.5	- ma
Negative Supply Current	${ }^{-1} \mathrm{SY}$	$\begin{aligned} & V_{1 L}=0.8 \mathrm{~V}, 2.0 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$	-	4.8	6.0	mA
Ground Current	IGND	$\begin{aligned} & V_{1 L}=0.8 \mathrm{~V}, 2.0 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$	\cdots -	$\therefore 0.6$	1.5	mA
Digital Input High	$\mathrm{V}_{\text {INH }}$	$T_{A}=$ Full Temperature Range	2.0	$\because \quad \therefore \quad \therefore-$	-	V
Digital Input Low	$V_{\text {INL }}$	$T_{A}=$ Full Temperature Range	-	-	0.8	V
Logic Input Current	I Logic	$\begin{aligned} & V_{1 N}=0 \text { to } 15 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$	-	1.0	5.0	$\mu \mathrm{A}$
Analog Voltage Range (Note 3)	Vanalog		-14.2	-	+14.2	V

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 18 V, R_{L}=$ OPEN, and $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted. Continued

PARAMETER	SYMBOL	CONDITIONS		MIN	$\underset{\text { TYP }}{\text { SSM-2402/2412 }}$	MAX	UNITS
Analog Current Range (Note 3)	I analog			-10	-	+10	mA
Overvoitage Input Current		$V_{\text {IN }}= \pm V_{\text {SUPPLY }}$		-	± 40	-	mA
Switch ON Resistance	$\mathrm{R}_{\text {ON }}$	$\begin{aligned} & -14.2 \leq V_{A} \leq+14.2 \mathrm{~V} \\ & \mathrm{I}_{A}= \pm 10 \mathrm{~mA}, \mathrm{~V}_{I L}=2.0 \mathrm{~V} \\ & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=\text { Full } \text { Temperature Range } \\ & T_{A} \text { empco }\left(\Delta R_{O N} / \Delta T\right) \end{aligned}$		-	$\begin{array}{r} 60 \\ 0.2 \end{array}$	$\begin{array}{r} 85 \\ 115 \end{array}$	$\boldsymbol{\Omega}$ $\boldsymbol{\Omega}$ $\boldsymbol{\Omega} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {ON }}$ Match	$\mathrm{R}_{\text {ON }} \mathrm{MATCH}$	$\begin{aligned} & -14.2 \leq V_{A} \leq+14.2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{A}}= \pm 10 \mathrm{~mA} \mathrm{~A}_{1}=2.0 \mathrm{~V} \end{aligned}$		-	1	5	\%
Switch ON Leakage Current	$\mathrm{IS}_{\text {SON })}$	$\begin{aligned} & V_{I L}=2.0 \mathrm{~V} \\ & -14.2 \mathrm{~V} \leq V_{A} \leq+14.2 \mathrm{~V} \\ & V_{A}=O V \end{aligned}$		-		1.0 10.0	$\ldots \mathrm{A}$
Switch OFF Leakage Current	$\mathrm{I}_{\text {S (OFF) }}$	$\begin{aligned} & V_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & -14.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+14.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V} \end{aligned}$		-	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	1.0 10.0	$\ldots \mathrm{A}$
Turn-On Time (Note 4)	${ }^{\text {ton }}$	$\begin{aligned} & V_{A}=+10 \mathrm{~V}, R_{L}=2 k \Omega \\ & T_{A}=+25^{\circ} \mathrm{C} \text {, See Test Circult } \end{aligned}$	$\begin{aligned} & \text { SSM-2402 } \\ & \text { SSM-2412 } \end{aligned}$	-	$\begin{array}{r} 10.0 \\ 3.5 \end{array}$	-	ms
Turn-OHf Time (Note 5)	${ }^{\text {toff }}$	$\begin{aligned} & V_{A}=+10 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega \\ & T_{A}=+25^{\circ} C_{1} \text { See Test Circuit } \end{aligned}$	$\begin{aligned} & \text { SSM-2402 } \\ & \text { SSM-2412 } \end{aligned}$	-	$\begin{aligned} & 4.0 \\ & 1.5 \end{aligned}$	-	ms
Break-Before-Make Time Delay (Note 6)	$\mathrm{t}_{\text {OFF }}-\mathrm{t}_{\text {ON }}$	$T_{A}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & \hline \text { SSM-2402 } \\ & \text { SSM-2412 } \end{aligned}$	-	$\begin{aligned} & 6.0 \\ & 2.0 \end{aligned}$	-	ms
Charge Injection	Q	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { SSM- } 2402 \\ & \text { SSM-2412 } \end{aligned}$	-	$\begin{array}{r} 50 \\ 150 \end{array}$	-	pC
ON-State Input Capacitance	$\mathrm{CS}_{(\mathrm{ON})}$	$\begin{aligned} & V_{A}=1 V_{R M S} \\ & f=5 k H z, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		-	12	-	pF
OFF-State Input Capacitance	$\mathrm{CS}_{(0 \mathrm{OF})}$	$\begin{aligned} & V_{A}=1 V_{\text {RMS }} \\ & f=5 k H z, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		-	4	-	pF
OFF Isolation	$\mathrm{I}_{\text {SOP(OFF) }}$	$\begin{aligned} & V_{A}=10 \mathrm{~V}_{\text {AMS }}, 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & T_{A}=+25^{\circ} \mathrm{C} \text {, See Test Circult } \end{aligned}$		-	120	-	dB
Channel-to-Channel Crosstalk	$\mathrm{C}_{\text {T }}$	$\begin{aligned} & V_{A}=10 V_{\text {RMS }^{1}} 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		-	96	-	dB
Total Harmonic Distortion (Note 7)	THD	0 to $10 \mathrm{~V}_{\text {RMS }}, 20 \mathrm{~Hz}$ to 20 kHz $T_{A}=+25^{\circ} \mathrm{C}, R_{L}=5 \mathrm{k} \Omega$		-	0.003	0.01	‥ \%
Spectral Noise Density	E_{n}	$\begin{aligned} & 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		-	1	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Wideband Noise Density	$\theta_{n p \cdot p}$	$\begin{aligned} & 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		-	0.2	-	$\mu V_{p-\rho}$

NOTES:

1. " $V_{I L}$ " is the Logic Control Input.
2. Current tested at $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$. This is the worst case condition.
3. Guaranteed by R_{ON} test condition.
4. Turn-ON Time is measured from the time the logic input reaches the 50% point to the time the output reaches 50% of the final value.
5. Turn-OFF time is measured from the time the logic Input reaches the 50% point to the time the output reaches 50% of the initial value.
6. Switch is guaranteed by design to provide break-before-make operation.
7. THD guaranteed by design and dynamic A_{ON} testing.

DICE CHARACTERISTICS

WAFER TEST LIMITS at $\mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{OPEN}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Parameter	SYMBOL	CONDITIONS (Note 1)	SSM-2402/2412 LIMIT	UNITS
Positive Supply Current	${ }_{+} H_{\text {SY }}$	$V_{\text {IL }}=0.8 \mathrm{~V}$	7.5	mA MAX
Negative Supply Current	$-_{\text {I }}^{\text {SY }}$	$V_{\text {IL }}=0.8 \mathrm{~V}$	6.0	mA MAX
Ground Current	! and	$\mathrm{V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}$	1.5	mA MAX
Logić Input Current	I Loaic	$\begin{aligned} & V_{i N}=0 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$	5.0	$\mu \mathrm{A}$ MAX
Switch ON Resistance	R_{ON}	$\begin{aligned} & -14.2 \leq V_{A} \leq+14.2 \mathrm{~V} \\ & I_{A}= \pm 10 \mathrm{~mA}_{1} V_{I L}=2.0 \mathrm{~V} \end{aligned}$	85	Ω MAX
$\begin{aligned} & \text { R ON Match }_{\text {Between Swltches }} \end{aligned}$	$\mathrm{R}_{\mathrm{ON}} \mathrm{MATCH}$	$\begin{aligned} & -14.2 \mathrm{~V} \leq V_{A} \leq+14.2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{A}}= \pm 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=2.0 \mathrm{~V} \end{aligned}$	5	\% MAX
Switch ON Leakage Current	$\mathrm{I}_{\text {SION }}$	$\begin{aligned} & -14.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+14.2 \mathrm{~V} \\ & \mathrm{~V}_{1 \mathrm{~L}}=2.0 \mathrm{~V} \end{aligned}$	1.0	$\mu \mathrm{A}$ MAX
Switch OFF Leakage Current	IS(OFF)	$\begin{aligned} & -14.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+14.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	1.0	$\mu \mathrm{M}$ MAX

NOTES:

1. $V_{I L}=$ Logic Control Input
$V_{A}=$ Applied Analog Input Voltage
$I_{A}=$ Applied Analog Input Current
2. Worst Case Condition

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS Continued

SSM-2402 ToN $_{\text {O }} /$ T $_{\text {OFF }}$ SWITCHING RESPONSE

SSM-2412 T ON $/ T_{\text {OFF }}$ SWITCHING RESPONSE

SWITCHING ON/OFF TRANSITION

$T_{\text {ON }} / T_{\text {OFF }}$ SWITCHING RESPONSE TEST CIRCUIT

SWITCH ON/OFF TRANSITION TEST CIRCUIT

"OFF" ISOLATION TEST CIRCUIT

SWITCHING TIME TEST CIRCUIT

SIMPLIFIED SCHEMATIC

APPLICATIONS INFORMATION

FUNCTIONAL SECTIONS

Each half of the SSM-2402/2412 are made up of three major functional blocks:

1. "T" Switch Consists of JFET switches S_{1} and S_{2} in series as the main switches and switch S_{3} as a shunt.
2. Ramp Generator

Generates a ramp voltage on command of the Control Input (see Figure 1). A LOW-to-HIGH TTL input at Control Input initiates a ramp that goes from approximately -7 V to +7 V in 12 ms . Conversely, a HIGH-to-LOW TTL transition at Control Input will cause a downward ramp from approximately +7 V to -7 V in 12 ms for the SSM-2402, and 4 ms for the SSM-2412. The Ramp Generator also supplies the +3 V and $-3 V$ reference levels for Switch Control.

3. Switch Control

The ramp from the Ramp Generator section is applied to two differential amplifiers (DA, and DA ${ }_{2}$) in the Switch Control block. (See Simplified Schematic). One amplifier is referenced to -3 V and the other is referenced to +3 V . Switch Control Outputs are:

- Main Switch Control - Drives two 0.25mA current sources that control the inverting inputs of each op amp. When ON, the current sources cause a gate-to-source voltage of approximately 2.5 V which is sufficient to turn off S_{1} and S_{2}. When the current sources from Main Switch Control are OFF, each op amp acts as a unitygain follower $\left(V_{G S}=0\right)$ and both switches (S_{1} and S_{2}) will be ON.
- Shunt Switch Control - Controls the Shunt Switch of the "T" configuration.

SWITCH OPERATION

Unlike conventional analog switches, the SSM-2402/2412 are designed to ramp on and off gradually over several milliseconds. The soft transition prevents popping or clicking in audio systems. Transients are minimized in active filters when the SSM-2402/2412 are used to switch component values.

To see how the SSM-2402/2412 switches work, first consider an OFF-to-ON transition. The Control Input is initially LOW and the Ramp Output is at approximately -7V. The Main Switch Control is HIGH which drives current sources Q_{3} and Q_{4} to 0.25 mA each. These currents generate 2.5 V gate-to-source back bias for each JFET switch (S_{1} and S_{2}) which holds them OFF.
The Shunt Switch Control is negative which holds the shunt JFET S_{3} ON. Undesired feedthrough signals in the series JFET switches S_{1} and S_{2} are shunted to the negative supply rail through S_{3}.

FIGURE 1: Ramp Generator

FIGURE 2: Switch Control

When the Control Input goes from LOW to HIGH, the Ramp Generator slews in the positive direction as shown in Figure 2. When the ramp goes more positive than-3V, the Shunt Switch Control is pulled positive by differential amplifier DA_{2} which thereby puts shunt switch S_{3} into the OFF state. Note that S_{1} and S_{2} are still OFF, so at this time all three switches in the "T" are OFF.

When the Ramp Output reaches +3 V , and the drive for the Main Switch Control output is gated OFF by differential amplifier DA current sources Q_{3} and Q_{4} go to the OFF state and the $V_{G s}$ of each main switch goes to zero. The high-speed op amp followers provide essentially zero gate-to-source voltage over the full audio signal range; this in turn assures a constant low impedance in the ON state over the full audio signal range. Total time to turn on the SSM-2402 switch is approximately 10.0 ms and 3.5 ms for the SSM-2412.

In systems using a large number of separate switches, there are advantages to having faster switching into OFF state than into the ON state. Break-before-make can be maintained at the system level. To see how the SSM-2402/2412 guarantee break-before-make, consider the ON-to-OFF transition.
A Control Input LOW initiates the ON-to-OFF transition. The Ramp Generator integrates down from approximately +7 V towards -7 V . As the ramp goes through +3 V , the comparator controlling the Main Switches (S_{1} and S_{2}) goes HIGH and turns on current sources Q_{3} and Q_{4} which thereby puts S_{1} and S_{2} into the OFF state. At this time, all switches in the " T " are OFF. When the ramp integrates down to -3 V , the Shunt Switch Control changes state and pulls shunt switch S_{3} into the ON state. This completes the ON-to-OFF transistion; S_{1} and S_{2} are OFF, and S_{3} is ON to shunt away any undesired feedthrough. Note though that the ON-to-OFF time for main switches S_{1} and S_{2} is only the time interval required for the ramp to go from +7 V to +3 V , about 4 ms for the SSM-2402, and 1.5 ms for the SSM-2412. The time to turn on is about 2.5 times as long as the time to turn off.

The SSM-2402/2412 are much more than simple single solidstate switches. The "T" configuration provides superb OFF-isolation through shunting of feedthrough via shunt switch S_{3}. Break-before-make is inherent in the design. The ramp provides a controlled gating action that softens the ON/OFF transitions. Distortion is minimized by holding zero gate-to-source voltage for the two main FET switches, S_{1} and S_{2}, using the two op amp followers. Figure 3 shows a distortion comparison between the SSM-2402 and a typical CMOS switch. In summary, the SSM2402/2412 are designed specifically for high-performance audio system usage.

OVERVOLTAGE PROTECTION

The SSM-2402/2412 are designed to guarantee correct operation with inputs of up to $\pm 14.2 \mathrm{~V}$ with $\pm 18 \mathrm{~V}$ supplies. The switch input should never be forced to go beyond the supply raiis. In the OFF condition, if the inputs exceeds +14.2 V , there is a risk of turning the respective input pass FET "ON." When the input voltage rises to within 3.8 V of the positive supply, the op amp follower saturates and will not be able to maintain the full 2.5 V of back bias on the gate-to-source junction. Under this condition, current will flow from the input through the shunt FET to the negative supply. This current is substantial, but is limited by the FET loss. Although this current will not damage the device, there is a danger of also turning on the output pass FET, especially if the output is close to the negative rail.
This risk of signal "breakthrough" for inputs above +14.2 V can be eliminated by using a source resistor of $100-500 \Omega$ in series with the analog input to provide additional current limiting.
Near the negative supply, transistors Q_{3} and Q_{4} saturate and can no longer keep the switch OFF. Signal breakthrough cannot happen, but the danger here is latch-up via a path to V through the shunt FET. Additional circuitry (not shown) has been incorporated to turn OFF the shunt FET under these conditions, and the potential for latch-up is thereby eliminated.

TYPICAL CONFIGURATION

* OPTIONAL INPUT RESISTORS

SEE SECTION ON OVERVOLTAGE PROTEGTION

* OPTIONAL LOAD RESISTORS

LOWER VALUES WILL MINIMIZE "CLICKS" BUT WITH A 10V RMS INPUT it is hecommended that they be greater than $2 k \Omega$

FIGURE 3: Comparison of the SSM-2402 and Typical CMOS Switch for Distortion

DIGITALLY-CONTROLLED ATTENUATOR

Figure 4 shows the usual approach to digitally-controlled attenuation. With S_{1} closed, the signal passes unattenuated to the output. With S_{1} open and S_{2} closed, the signal is attenuated by R_{1} and R_{2}. The advantage of this configuration is that the attenuator current does not have to flow through the switches. The disadvantage is that the output is undefined during the switching period, which can be several milliseconds.

The low distortion characteristics of the SSM-2402/2412 enable the alternate arrangement of Figure 5 to be used. Now only one switch is required to change between two gains, and there is always a signal path to the output. Values for R_{2} will typically be in the low kilohm range.

For more gain steps and higher attenuation, the ladder arrangement of Figure 6 can be used. This enables a wide dynamic range to be achieved without the need for large value resistors, which would result in degradation of the noise performance.

FIGURE 4

FIGURE 5

FIGURE 6

FEATURES

- High Common-Mode Rajaction
DC
100dB Typ
60 Hz 100dB Typ
20 kHz 70dB Typ
40 kHz 62dB Typ
- Low Dlstortion .. 0.001\% Typ
- Fast Slew Rate 9.5V/us Typ
- Wide Bandwidth 3MHz Typ
- Low Cost
- Complements SSM-2142 Differential Line Driver

APPLICATIONS

- Llne Receivers
- Summing Amplifiers
- Buffer Amplifiers - Drives 600Ω Load

ORDERING INFORMATION

PACKAGE	OPERATING TEMPERATURE RANGE
PLASTIC	
B-PIN	XIND*
SSM2141P	

${ }^{*} \mathrm{XIND}=-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$

FUNCTIONAL.DIAGRAM

GENERAL DESCRIPTION

The SSM-2141 is an integrated differential amplifier intended to receive balanced line inputs in audio applications requiring a highlevel of noise immunity and optimum common-mode rejection. The SSM-2141 typically achieves 100 dB of commonmode rejection (CMR), whereas implementing an op amp with four off-the-shelf precision resistors will typically achieve only 40 dB of CMR - inadequate for high-performance audio.
The SSM-2141 achieves low distortion performance by maintaining a large slew rate of $9.5 \mathrm{~V} / \mu \mathrm{s}$ and high open-loop gain. Distortion is less than 0.002% over the full audio bandwidth. The SSM-2141 complements the SSM-2142 balanced line driver. Together, these devices comprise a fully integrated solution for equivalent transformer balancing of audio signals without the problems of distortion, EMI fields, and high cost.
Additional applications for the SSM-2 141 include summing signals, differential preamplifiers, and 600Ω low distortion buffer amplifiers.

PIN CONNECTIONS

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage $\pm 18 \mathrm{~V}$
Input Voltage (Note 1) Supply Voltage
Output Short-Circuit Duration Continuous
Storage Temperature Range
P Package $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PACKAGE TYPE	$\Theta_{\text {JA }}$ (Note 2)	$\Theta_{\text {IC }}$	UNITS
B-Pin Plastic DIP (P)	103	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

1. For supply voltages less than $\pm 18 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage:
2. $\theta_{\mid A}$ is specified for worst case mounting conditions, i.e., $\Theta_{\mid A}$ is specified for device in socket for P-DIP package.

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 18 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN	$\underset{\text { TYP }}{S_{S M-2141}}$	MAX	UNITS
Oftser Voltage	$V_{\text {os }}$	$V_{C M}=0 \mathrm{~V}$	-1000	25	1000	$\mu \mathrm{V}$
Gain Error		No Load, $\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$	-	0.001	0.01	\%
Input Voltage Range	IVR	(Note 1)	± 10	-	-	\checkmark
Common-Made Rejection	CMR	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	80	100	-	dB
Power Supply Rejection Ratlo	PSRR	$\mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	-	0.7	15	$\mu \mathrm{V} / \mathrm{N}$
Output Swing	V_{0}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 13	± 14.7	-	\checkmark
Short-Circuit Current Limit	I_{sc}	Output Shorted To Ground	+45/-15	-	-	mA
Small-Signal Bandwidth (-3dB)	BW	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	-	3	-	MHz
Slew Rate	SR	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	6	9.5	-	$\mathrm{V} / \mathrm{\mu s}$
Total Harmonic Distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \hline \end{aligned}$	-	$\begin{array}{r} 0.001 \\ 0.01 \end{array}$	-	\%
Capacitive Load Drive Capability	C_{L}	No Oscillation	-	300	-	pF
Supply Current	$\mathrm{I}_{\text {SY }}$	No Load	-	2.5	3.5	mA

NOTE:

1. Input voltage range guaranteed by CMR test.

ELECTRICAL. CHARACTERISTICS at $V_{S}= \pm 18 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.

PARAMETER	SYMBOL	CONDITIONS	MIN	${\underset{\text { TYP }}{\text { SSM- } 2141}}^{2}$	MAX	UNITS
Offer Voltage	$v_{\text {os }}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	-2500	200	2500	$\mu \mathrm{V}$
Gain Error		No Load, $\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$	-	0.002	0.02	\%
Input Voltage Range	IVR	(Note 1)	± 10	-	-	v
Common-Mode Rejection	CMR	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	75	90	-	dB
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	-	1.0	20	$\mu \mathrm{VN}$
Output Swing	V_{0}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 13	± 14.7	-	\checkmark
Slew Rate	SR	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	-	9.5	-	$\mathrm{V} / \mathrm{\mu s}$
Supply Current	$\mathrm{I}_{\text {SY }}$	No Load	-	2.6	4.0	mA

NOTE:

1. Input voltage range guaranteed by CMR test.

TYPICAL PERFORMANCE CHARACTERISTICS

SMALL-SIGNAL TRANSIENT
RESPONSE

$$
T_{A}=+25^{\circ} \mathrm{C}
$$

$V_{S}= \pm 15 \mathrm{~V}$

TOTAL HARMONIC DISTORTION vs FREQUENCY

LARGE-SIGNAL TRANSIENT RESPONSE

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
$V_{S}= \pm 15 \mathrm{~V}$

DYNAMIC INTERMODULATION DISTORTION vs FREQUENCY

TYPICAL PERFORMANCE CHARACTERISTICS Continued

TYPICAL PERFORMANCE CHARACTERISTICS Continued

$$
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& V_{S}= \pm 15 \mathrm{~V}
\end{aligned}
$$

NOTE: EXTERNAL AMPLIFIER GAIN $=1000 ;$ THEREFORE, VERTICAL SCALE $=10 \mu$ V/DIV.

$$
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& V_{S}= \pm 15 \mathrm{~V}
\end{aligned}
$$

NOTE: EXTERNAL AMPLIFIER GAIN $=1000$; THEREFORE, VERTICAL SCALE $=10 \mu$ V/DIV.

SLEW RATE TEST CIRCUIT

APPLICATIONS INFORMATION

The SSM-2141 represents a versatile analog building block. In order to capitalize on fast settling time, high slew rate, and high CMR, proper decoupling and grounding techniques must be employed. For decoupling, place $0.1 \mu \mathrm{~F}$ capacitor located within close proximity from each supply pin to ground.
MAINTAINING COMMON-MODE REJECTION
In order to achieve the full common-mode rejection capability of the SSM-2141, the source impedance must be carefully controlled. Slight imbalances of the source resistance will result in a degradation of DC CMR - even a 5Ω imbalance will degrade CMR by 20dB. Also, the matching of the reactive source impedance must be matched in order to preserve theCMRR over frequency.

APPLICATION CIRCUITS

FIGURE 1: Precision Difference Amplifier. Rejects CommonMode Signal $=\frac{\left[E_{1}+E_{2}\right]}{2}$ by 100 dB

FIGURE 2: Precision Unity-Gain Inverting Amplifier

FIGURE 3: Precision Summing Amplifier

FIGURE 4: Precision Summing Amplifier with Gain

FIGURE 5: Suitable instrumentation amplifier requirements can be addressed by using an input stage consisting of A_{1}, A_{2}, A_{1} and R_{2}.

ADVANCE PRODUCT INFORMATION

FEATURES

- Transformer-Like Output
- Drlves: 10V ${ }_{\text {RMS }}$ Into a 600 Load
- Low Gain Error (Differentlal or Single-Ended) < 0.1\%
- Low Supply Current (Qulescent) \qquad 8 mA Max
- High Slew Rate .. 15V/us
- Short-Clrcult Protected Outputs
- Space Saving 8-Pin MInl-DIP
- No External Components Requlrad

APPLICATIONS

- Audio Mix Consoles
- Graphic and Parametric Equalizers
- Dynamic Range Processors
- Dlgital Effects Processors
- High Performance HI-FI
- Instrumentation Equipment

ORDERING INFORMATION

PACKAGE	OPERATING TEMPERATURE PLASTIC B-PIN
RSM2142P	XIND

- $\mathrm{XIND}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

The SSM-2142 is a fully integrated processing block used to derive precision balanced outputs from a single-ended input in high performance audio systems. The output, which drives a 600Ω load from a $10 \mathrm{~V}_{\text {RMs }}$ signal, functions very similar to trans-former-based circuits. Low gain error and high slew rate further enhance the SSM-2142, making it the ideal output device in systems requiring balanced or differential outputs with high drive capability.

TYPICAL APPLICATION

BLOCK DIAGRAM

Thls advance product Information describes a product in development at the time of thls printing. Final speciflcatlons may vary. Please contact local sales office or distributor for final data sheot.

FEATURES

- Low Distortion - DC to $40 \mathrm{kHz}, A_{v}=+10$ \qquad 0.01\% Typ
- High Slew Rate \qquad 40V/ $\mu \mathrm{s}$ MIn
- Gain-Bandwidth Product 10MHz Typ
- High Galn \qquad 200,000 Typ
- Common-Mode Rejection \qquad 80dB Min

APPLICATIONS

- Power Ampliflar Drlver
- Active Filter Circults
- Parametric Equalizers
- Graphic Equalizers
- Mixing Consoles
- Voltage Summers
- Actlve Crossover Networks

GENERAL DESCRIPTION

The SSM-2131 is a fast JFET input operational amplifier intended for use in audio applications. The SSM-2131 offers a symmetric $50 \mathrm{~V} / \mu \mathrm{s}$ slew rate for low distortion and is internally compensated for unity gain operation. Power supply current is less than 6.5mA. Unity-gain stability, a wide full-power bandwidth of 800 kHz , and excellent ability to handle transient overloads make the SSM-2131 an ideal amplifier for use in high performance audio amplifier circuits.

The SSM-2131's common-mode rejection of 80 dB minimum over a ± 11 range is exceptional for a high-speed amplifier. High CMR, combined with a minimum $500 \mathrm{~V} / \mathrm{mV}$ gain into a $10 \mathrm{k} \Omega$ load ensures excellent linearity in both noninverting and inverting gain configurations. This means that distortion will be very low over a wide range of circuit configurations. The low offset provided by the JFET input stage often eliminates the need for AC coupling or for external offset trimming.

The SSM-2131 conforms to the standard 741 pinout with nulling to V -. The SSM-2131 upgrades the performance of circuits using the AD544, AD611, AD711, and LF400 by direct replacement.

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC

ORDERING INFORMATION

	PACKAGE	
PLASTIC	SO	OPERATING 8-PIN
SSM2131P	8-PIN	TEMPERATURE RANGE
${ }^{\circ}$ XIND $=-40^{\circ} \mathrm{C}$ t0 $+85^{\circ} \mathrm{C}$		SSM2131S

ABSOLUTE MAXIMUM RATINGS

Supply Voltage .. $\pm 20 \mathrm{~V}$
Input Voltage (Note 1).. $\pm 20 \mathrm{~V}$
Differential Input Voltage (Note 1) 40V

Output Short-Circuit Duration.................................. Indefinite
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$

PACKAGE TYPE	Θ_{JA} (Note 2)	$\boldsymbol{\theta}_{\mathrm{Jc}}$	UNITS
8 -Pin Plastic DIP (P)	103	43	${ }^{\circ} \mathrm{CNN}$
8 -Pin $\mathrm{SO}(\mathrm{S})$	158	43	${ }^{\circ} \mathrm{CN}$

NOTES:

1. For supply voltages less than $\pm 20 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
2. $\boldsymbol{\theta}_{\mathrm{iA}}$ is specified for worst case mounting conditions, i.e., $\boldsymbol{\theta}_{\mathrm{iA}}$ is specified for device in socket for P-DIP packages; $\theta_{j A}$ is specified for device soldered to printed circuit board for SO package.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN	$\begin{gathered} \text { SSM-2131 } \\ \text { TYP } \end{gathered}$	MAX	UNITS
Slew Rate	SR		40	50	-	V/us
Gain-Bandwidth Product	GBW	$\mathrm{f}_{0}=10 \mathrm{kHz}$	-	10	-	MHz
Full-Power Bandwidth	BW_{p}	(Note 2)	600	800	-	\% kHz
Total Harmonic Distortion	THD	$D C$ to $40 \mathrm{kHz}, \mathrm{A}_{L}=10 \mathrm{k} \Omega, A_{V}=+10$	-	0.01	-	\% \%
Voltage Noise Denisity	θ_{n}	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & 38 \\ & 13 \end{aligned}$	-	$\mathrm{n} \mathrm{V} / \sqrt{\mathrm{Hz}}$
Current Noise Density	i_{n}	$\mathrm{f}_{0}=1 \mathrm{kHz}$	-	0.007	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
Large-Signal Voltage Gain	${ }^{\text {a vo }}$	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \quad V_{O}= \pm 10 \mathrm{~V} \\ & R_{L}=2 \mathrm{k} \Omega \quad \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 500 \\ & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 900 \\ & 260 \\ & 170 \end{aligned}$	-	V / mV
Output Vottage Swing	v_{0}	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	± 11.5	$\begin{array}{r} \hline+12.5 \\ -11.9 \end{array}$	-	V
Offset Voltage	$v_{\text {os }}$		-	1.5	6.0	mV
Input Bias Current	I_{B}	$V_{C M}=0 \mathrm{~V} T_{j}=25^{\circ} \mathrm{C}$	-	130	250	pA
Input Offset Current	Ios	$\mathrm{V}_{C M}=0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	6	50	pA
Input Voltage Range	\because IVR	(Note 1)	± 11.0	$\begin{array}{r} +12.5 \\ -12.0 \end{array}$	-	V
Common-Mode Rejection	CMR	$V_{C M}= \pm 11 \mathrm{~V}$	80	92	-	dB
Power-Supply Rejection Ratlo	PSRR	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ to +20 V	-	12	50	$\mu \mathrm{V} / \mathrm{V}$
Supply Current	$I_{S Y}$	No Load $v_{0}=0 \mathrm{~V}$	-	5.1	6.5	mA
Short-Circuit Current Limit	$I_{\text {sc }}$	Output Shorted to Ground	± 20	$\begin{aligned} & +33 \\ & -28 \end{aligned}$	± 60	mA
Settling Time	t_{3}	10V Step 0.01\% (Note 3)	-	0.9	1.2	$\mu \mathrm{s}$
Overload Recovery Time	${ }^{\text {tor }}$		-	700	-	ns

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}_{,} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Continued

NOTES:

1. Guaranteed by CMR test.
2. Guaranteed by slew-rate test and formula $B W_{p}=S R /\left(2 \pi 10 V_{\text {PEAK }}\right)$.
3. Settling time is guaranteed but not tested.
4. Guaranteed but not tested.

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 15 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN	SSM-2131 TYP	MAX	UNITS
Slew Rate	SR	$\mathrm{A}_{\mathrm{L}}=2 \mathrm{k} \Omega$	40	50	-	$\mathrm{V} / \mathrm{\mu s}$
Large-Signal Voltage Gain	$A_{\text {vo }}$	$\begin{array}{ll} R_{L}=10 \mathrm{k} \Omega & (\text { Note } 1) \\ R_{L}=2 k \Omega & V_{O}= \pm 10 \mathrm{~V} \end{array}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 500 \\ & 160 \end{aligned}$	-	V / mV
Output Voltage Swing	V_{0}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 11.0	$\begin{array}{r} +12.3 \\ -11.8 \end{array}$	-	v
Offset Voltage	$\mathrm{V}_{\text {os }}$		-	2.0	7.0	mV
Offset-Voltage Temperature Coefficient	$\mathrm{TCV}_{\text {os }}$		-	8	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{8}	(Note 1)	-	0.6	2.0	nA
Input Offset Current	los	(Note 1)	-	0.06	0.4	nA
Input Voltage Range	IVR	(Note 2)	± 11.0	$\begin{array}{r} +12.5 \\ -12.0 \end{array}$	-	V
Common-Mode Rejection	CMR	$\mathrm{V}_{\mathrm{CM}}= \pm 11 \mathrm{~V}$	80	94	-	dB
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	-	6	50	$\mu \vee /$
Supply Current	ISY	No Load $V_{0}=0 \mathrm{~V}$	-	5.1	6.5	mA
Short-Circuit Current Limit	I_{sc}	Output Shorted to Ground	± 8	-	± 60	mA

NOTES:

1. $T_{1}=85^{\circ} \mathrm{C}$.
2. Guaranteed by CMR test.

TYPICAL PERFORMANCE CHARACTERISTICS

CLOSED-LOOP GAIN vs FREQUENCY

SLEW RATE vs TEMPERATURE

MAXIMUM OUTPUT SWING vs FREQUENCY

CLOSED-LOOP OUTPUT IMPEDANCE vS FREQUENCY

SLEW RATE vs DIFFERENTIAL INPUT VOLTAGE

VOLTAGE NOISE DENSITY vs FREQUENCY

OPEN-LOOP GAIN, PHASE vs FREQUENCY

SLEW RATE vs CAPACITIVE LOAD

TYPICAL PERFORMANCE CHARACTERISTICS Continued

SETTLING-TIME vs STEP SIZE

COMMON-MODE
REJECTION vs FREQUENCY

SUPPLY CURRENT vs TEMPERATURE

BIAS CURRENT vs JUNCTION TEMPERATURE

POWER-SUPPLY REJECTION vs FREQUENCY

SUPPLY CURRENT vs SUPPLY VOLTAGE

BIAS CURRENT vs COMMON-MODE VOLTAGE

APPLICATIONS INFORMATION

The SSM-2131 combines speed with a high level of input precision usually found only with slower devices. Well-behaved AC performance in the form of clean transient response, symmetrical slew rates and a high degree of forgiveness to supply decoupling are the hallmarks of this amplifier. AC gain and phase response are quite independent of temperature or supply voltage. Figure 1 shows the SSM-2131's small-signal response. Even with 75pF loads, there is minimal ringing in the output waveform. Large-signal response is shown in Figure 2. This figure clearly shows the SSM-2131's exceptionally close matching between positive and negative slew rates. Slew rate symmetry decreases the DC offset a system encounters when processing high-frequency signals, and thus reduces the DC current necessary for load driving.

FIGURE 1: Small-Signal Transient Response, $Z_{L}=2 k \Omega| | 75 p F$

FIGURE 2: Large-Signal Transient Response, $Z_{L}=2 k \Omega| | 75 p F$

As with most JFET-input amplifiers, the output of the SSM-2131 may undergo phase inversion if either input exceeds the specified input voltage range. Phase inversion will not damage the amplifier, nor will it cause an internal latch-up.
Supply decoupling should be used to overcome inductance and resistance associated with supply lines to the amplifier.

For most applications, a $0.1 \mu \mathrm{~F}$ to $0.01 \mu \mathrm{~F}$ capacitor should be placed between each supply pin and ground.

OFFSET VOLTAGE ADJUSTMENT

Offset voltage is adjusted with a $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ potentiometer as shown in Figure 3. The potentiometer should be connected between pins 1 and 5 with its wiper connected to the V - supply.

Alternately, $V_{o s}$ may be nulled by attaching the potentiometer wiper through a $1 \mathrm{M} \Omega$ resistor to the positive supply rail.

FIGURE 3: Input Offset Voltage Nulling

VOLTAGE SUMMING

Because of its extremely low input bias current and large unitygain bandwidth, the SSM-2131 is ideal for use as a voltage summer or adder.

The following figures show both an inverting and noninverting voltage adder.

FIGURE 4: Inverting Adder

$V_{\text {OIT }}=R_{4}\left(\frac{V_{N 1}}{R_{1}}+\frac{V_{N 2}}{R_{2}}+\frac{V_{V 3}}{R_{3}}\right)\left(\frac{R_{6}+R_{5}}{R_{3}}\right)$ ASSUME $R_{4} \ll R_{1}, R_{2}, R_{3}$

FIGURE 5: Noninverting Adder

CURRENT FEEDBACK AUDIO POWER AMPLIFIER

The SSM-2131 can be used as the input buffer in a current feedback audio power amplifier as shown in Figure 6. This design is capable of very good performance as shown in Figures 7,8 and 9. At 1 kHz and 50 watts output into an 8Ω load, the amplifier generates just 0.002% THD, and is flat to 1 MHz . The slew rate for
the overall amplifier is more than adequate at $300 \mathrm{~V} / \mu \mathrm{s}$ and is $r e-$ sponsible for the very low dynamic intermodulation distortion (DIM-100) that was measured at just 0.0017% at 50 watts output into 8 ohms. The total amplifier idling current for all tests was approximately 300 mA ; the $\mathrm{V}_{+} / \mathrm{V}_{++}$and $\mathrm{V}_{-} / \mathrm{V}_{-}$- power supplies were both $\pm 40 \mathrm{~V}$; and the gain was set to 24.0.

In a current feedback amplifier, a unity or low gain input buffer drives a low impedance network. Any differential current that flows in the collectors of the buffer (SSM-2131) output transistors is fed, via the two complementary Wilson current mirrors A and B, to a high impedance gain node where the high output voltage is generated.

This voltage is then buffered by a double emitter follower driver stage and fed to the complementary power MOSFET output stage. No RC compensation network to ground or output inductor is required at the output of this amplifier to make it stable. As the 100 kHz square wave response shows, there's no evidence of any instability in the circuit. Capacitive load compensation can be provided by the components marked TBD on the amplifier schematic. These were not used in the test, however.

FIGURE 6: Audio Power Amplifier Schematic

FIGURE 7: THD vs. Frequency (at 50W into 8s)

FIGURE 8: Frequency Response

FIGURE 9: 100 kHz Square Wave into 88

One problem that is commonly encountered with current feedback amplifiers is that the mismatch between the two current mirrors A and B forces a small bias current to appear at the input buffer's output terminal. This bias current (usually in the range of $1-100 \mu \mathrm{~A})$ is multiplied by the feedback resistor of 750Ω and generates an output offset that could be tens of millivolts in magnitude. Matched transistors could be used in the current mirrors, but these do not completely eliminate the output offset problem.

An inexpensive solution is to use a low power precision DC op amp, such as the OP-97, to control the amplifier's DC characteristics, thus overriding the DC offset due to mismatch in the current feedback loop. The OP-97 acts as a current output DCservo amplifier that injects a compensating current into the emitters of the low voltage regulator transistors (that power the SSM-2131) to correct for current mirror mismatch. Since the OP-97 is set for an overall input-to-output gain of 24.0 as well, the DC output offset is equal to the OP-97's $V_{\text {os }} \times 24.0$, which is roughly 1 millivolt. Thus, any offset trimming can be completely eliminated. Together, the SSM-2131 and OP-97 provide a level of performance that exceeds most of the requirements for audio power amplifers. The driver circuit can handle several pairs of power MOSFETs in the output stage if required. This topology can be used in circuits that must deliver several hundreds of watts to a load by using higher voltage transistors in the driver stage. Operation with rail voltages in excess of $\pm 100 \mathrm{~V}$ is possible. If more gain is desired, the SSM-2131 input buffer can have its gain increased from the nominal value of 1.5 used in this example to as much as 10 before its bandwidth drops below that of the current feedback section.

DRIVING A HIGH-SPEED ADC

The SSM-2131's open-loop output resistance is approximately 50Ω. When feedback is applied around the amplifier, output resistance decreases in proportion to closed-loop gain divided by open-loop gain ($A_{\text {vci }} / A_{\text {vol }}$). Output impedance increases as open-loop gain rolls-off with frequency. High-speed analog-todigital converters require low source impedances at high frequency. Output impedance at 1 MHz is typically 5Ω for an SSM2131 operating at unity-gain. If lower output impedances are required, an output buffer may be placed at the output of the SSM2131.

HIGH-CURRENT OUTPUT BUFFER

The circuit in Figure 10 shows a high-current output stage for the SSM-2131 capable of driving a 75Ω load with low distortion. Output current is limited by R_{1} and R_{2}. For good tracking between the output transistors Q_{1}, Q_{2}, and this biasing diodes D_{1} and D_{2}, thermal contact must be maintained between the transistor and its associated diode. If good thermal contact is not maintained, R_{1} and R_{2} must be increased to $5-6 \Omega$ in order to prevent thermal runaway. Using 5Ω resistors, the circuit easily drives a 75Ω load (Figure 11). Output resistance is decreased and heavier loads may be driven by decreasing R_{1} and R_{2}.
Base current and biasing for Q_{1} and Q_{2} are provided by two current sources, the SSM-2131 and the JFET. The $2 \mathrm{k} \Omega$ potentiometer in the JFET current source should be trimmed for optimum transient performance. The case of the SSM-2210 should be connected to V -, and decoupled to ground with a $0.1 \mu \mathrm{~F}$ capacitor. Compensation for the SSM-2.131's input capacitance is provided by C_{c}. The circuit may be operated at any gain, in the usual op amp configurations.

FIGURE 10: High-Current Output Buffer

DRIVING CAPACITIVE LOADS

Best performance will always be achieved by minimizing input and load capacitances around any high-speed amplifier. However, the SSM-2131 is guaranteed capable of driving a 100pF capacitive load over its full operating temperature range while

FIGURE 11: Output Buffer Large-Signal Response
operating at any gain including unity. Typically, an SSM-2131 will drive more than 250 pF at any temperature. Supply decoupling does affect capacitive load driving ability. Extra care should be given to ensure good decoupling when driving capacitive loads; between $1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ should be placed on each supply rail.
Large capacitive loads may be driven utilizing the circuit shown in Figure 12. R_{1} and C_{1} introduce a small amount of feedforward compensation around the amplifier to counteract the phase lag induced by the ouput impedance and load capacitance. At DC and low frequencies, R_{1} is contained within the feedback loop. At higher frequencies, feedforward compensation becomes increasingly dominant, and R_{1} 's effect on output impedance will become more noticeable.

FIGURE 12: Compensation for Large Capacitive Loads

When driving very large capacitances, slew rate will be limited by the short-circuit current limit. Although the unloaded slew rate is insensitive to variations in temperature, the output current limit has a negative temperature coefficient, and is asymmetrical with regards to sourcing and sinking current. Therefore, slew rate into excessive capacities will decrease with increasing temperature, and will lose symmetry.

DAC OUTPUT AMPLIFIER

The SSM-2131 is an excellent choice for a DAC output amplifier, since its high speed and fast settling-time allow quick transitions between codes, even for full-scale changes in output level. The DAC output capacitance appears at the operational amplifier inputs, and must be compensated to ensure optimal settling speed. Compensation is achieved with capacitor C in Figure 13. C must be adjusted to account for the DAC's output capacitance, the op amp's input capacitance, and any stray capacitance at the inputs. With a bipolar DAC, an additional shunt resistor may be used to optimize response. This technique is described in PMI's application AN-24.

NOTE: R_{F} IS INTERNAL TO MOST CMOS DACS

FIGURE 13: DAC Output Amplifier Circuit

Highest speed is achieved using bipolar DACs such as PMI's DAC-08, DAC-10 or DAC-312. The output capacitances of these converters are up to an order of magnitude lower than their CMOS counterparts, resulting in substantially faster set-tling-times. The high output impedance of bipolar DACs allows the output amplifier to operate in a true current-to-voltage mode, with a noise gain of unity, thereby retaining the amplifier's full bandwidth. Offset voltage has minimal effect on linearity with bipolar converters.
CMOS digital-to-analog converters have higher output capacitances and lower output resistances than bipolar DACs. This results in slower settling-times, higher sensitivity to offset voltages and a reduction in the output amplifier's bandwidth. These tradeoffs must be balanced against the CMOS DAC's advantages in terms of interfacing capability, power dissipation, accuracy levels and cost. Using the internal feedback resistor which is pres-
ent on most CMOS converters, the gain applied to offset voltage varies between $4 / 3$ and 2 , depending upon output code. Contributions to linearity error will be as much as $2 / 3 \mathrm{~V}_{\text {os }}$. In a 10-volt: 12-bit system, this may add up to an additional $1 / 5$ LSB DNL. with the SSM-2131. Amplifier bandwidth is reduced by the same gain factor applied to offset voltage, however the SSM-2131's 10 MHz gain-bandwidth product results in no reduction of the CMOS converter's multiplying bandwidth.
Individual DAC data sheets should be consulted for more complete descriptions of the converters and their circuit applications.

FIGURE 14: DAC Output Amplifier Response (PM-7545 DAC)

COMPUTER SIMULATIONS

The following pages show the SPICE macro-model for the SSM2131 high-speed audio operational amplifier. This model was tested with, and is compatible with PSpice* and HSPICE**. The schematic and net-list are included here so that the model can easily be used. This model can accommodate multiple frequency poles and multiple zeroes, which is an advanced concept that results in more accurate AC and transient responses necessary for simulating the behavior of today's high-speed op amps. For example, 8 poles and 2 zeroes are required to sufficiently simulate the SSM-2131, which this advanced model can. easily accommodate.
Throughout the SSM-2131 macro-model, RC networks produce the multiple poles and zeroes which simulate the SSM-2131's $A C$ behavior. Each stage contains a pole or a pole-zero pair. The stages are separated from each other by voltage-controlled current sources so that the poles and zero locations do not interact. The only nonlinear elements in the entire model are two p-channel JFETs which comprise the input stage. Limiting the model to almost entirely linear circuit elements significantly reduces simulation time and simplifies model development.

[^8]

* POLE AT 53 MHz

r17. 18	99	1E6
$\begin{array}{rl}18 & 18\end{array}$	50	1 E6
c11. 18	99	3E-15
c12 18	50	3E-15
g9 99	18	1726
g10 18	50	2617
* POLE AT 53 MHz		
11919	99	1 E6
r20. 19	50	1 E6
c13 19	99	3E-15
c14 19	50	3E-15
g11 99	19	1826
g12 19	50	2618

*COMMON-MODE GAIN NETWORK WITH ZERO AT 100 kHZ

r21	20	21	1E6
r22	20	23	$1 E 6$
11	21	99	1.5915
12	23	50	1.5915
g13	99	20	3
g14	20	$1 E-11$	
\star		50	26

*POLE AT 79.6 MHz

r24	25	99	$1 E 6$	
r25	25	50	$1 E 6$	
$c 15$	25	99	$2 E-15$	
$c 16$	25	50	$2 E-15$	
g15	99	25	19	
$g 16$	25	50	2619	$1 E-6$
${ }_{*}$				

*OUTPUT STAGE

r26	26	99	111.1E3
r27	26	50	111.1E3
r28	27	99.	90
r29	27	50	90
13	27	32	2.5E-7
g17	30	50	25271
$g 18$	31	50	27251
919	27	99	99251
g20	50	27	25501
v6	28	27	0.7
$\checkmark 7$	27	29	0.7
d5	25	28	dx
$d 6$	29	25	$d x$
d7	99	30	$d x$
d8	99	31	dx
d9	50	30	dy
d10	50	31	dy

\cdot model $\mathfrak{x} \times \mathrm{PJF}(\mathrm{BETA}=999.3 \mathrm{E}-6 \mathrm{VTO}=-2.000$ IS=4E-11)
-model dx D(IS=1E-15)
\cdot model dy $\quad D(I S=1 E-15 \quad B V=50)$
-ends SSM-2131

LICENSE STATEMENT AND LIMITED WARRANTY

This SSM-2131 macro-model is protected under United States copyight laws and Callfornla trade secret laws. Preclslon. Monolithics inc. hereby grants users of thls macro-model, hereto reterred to as the licenses, a nonexclusive, nontransterable license to use this SSM-2 131 macro-model as long as the ilcerisee abldes by the terms of thls agreement. Before using the SSM-2131 macro-model, the Ilcensee should read this ilcense. If the licensee does not accept these terms, this data sheet should be returned to PMI within 30 days.
The licensee agrees to treat this macro-model |ust like e book, except that the licensee may not loan, rent, lease, or ilcense the macro-model, in whole, in paft, or in modited form, to anyone auteide the licensee's company. The licensee may modify thls SSM-2131 macro-model to sult his spec|fic epplicatlons, and the licensee may make coples of the macro-model for use within hls company only. This macro-model is provided solely and exclusively for use by PMI customers to assist inem In the assessment of the SSM-2131 for poselble applications. The SSM-2131 macro-model ie provided "ae is." PMI makes no warranty, elther express or Implied, fincluding but not limited to any implied warranties or merchantability and filness for a particular purpose using this macro-model. In no event will PMI be llable for speclal, collateral, incldental, or consequentlal damages in connection with or arising out of the use of the macro-model.

ADVANCE PRODUCT INFORMATION

FEATURES

- Low Input Noise Voltage \qquad $6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- High Slew Rate $15 \mathrm{~V} / \mu \mathrm{s}$
- Low Supply Current (per Amplifier) 4mA
- High Output Drive \qquad $10 V_{\text {RMS }}$ Into 600Ω
- Wide Gain Bandwidth Product \qquad 16 MHz
- Extended Industrial
\qquad
- Unity-Gain Stablility
- Low Cost

APPLICATIONS

- Audio MIx Consoles
- Dynamic Range Processors
- Power Ampliflers
- Consumer HI-FI Equipment
- Graphic and Parametric Equalizars
- Audio Test and Measurement Equipment

ORDERING INFORMATION

PACKAGE		OPERATING
PLASTIC	SO	TEMPERATURE
8-PIN	R-PIN	RANGE
SSM2132P	SSM2132S	XIND*
XIND $=-40^{\circ} \mathrm{C}+0+85^{\circ} \mathrm{C}$		

GENERAL DESCRIPTION

The SSM-2132 is a high performance upgrade to the audio industry standard 5532 operational amplifier. All performance parameters have been optimized for high performance professional and consumer audio systems.
Low input noise, high output drive, excellent slew rate and bandwidth, and unity-gain stability are the key attributes of the SSM2132. A further improvement is a 50 percent reduction in current consumption, resulting in cooler operation. Finally, the SSM2132 is the only direct replacement to the 5532 that is available. in an 8 -pin SO package.

PIN CONNECTIONS

8-PIN PLASTIC DIP (P-Sufilix)

8-PIN SO (S-Sufilx)

Precision Monolithics Inc.

FEATURES

- Very Low input Noise Voltage \qquad 3.5nV $/ \sqrt{\mathrm{Hz}}$ Typ
- WIde Small-Signal Bandwldth \qquad 10MHz Typ
- High Current Drive Capablilty
($10 \mathrm{~V}_{\text {RMS }}$ Into $600 \Omega @ \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V}$)
- High Slew Rate \qquad 13V/us Тур
- Wide Power Bandwldth 200kHz Typ
- High Open-Loop Gain \qquad
- Extended Industrial

Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

- Direct Replacement for Indusiry Standard 5534AN

APPLICATIONS

- HIgh Qualilty Audio Ampilifers
- Telephone Channel Amplifiers
- Actlve Filter Designs
- Microphone Preamplifiers
- Audlo Line Drivers
- Low-Level Slgnal Detection
- Servo Control Systems

GENERAL DESCRIPTION

The SSM-2134 is a high performance low noise operational amplifier which offers exceptionally low voltage noise of $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, outstanding output drive capability, and very high small-signal and power bandwidth. This makes the SSM-2134 an ideal choice for use in high quality and professional audio equipment, instrumentation, and control circuits.
The SSM-2134 is internally compensated for $A_{v} \geq 3$. However, the frequency response can be optimized with an external compensation capacitor to enable the SSM-2134 to operate at unity-gain or drive large capacitive loads.

The SSM-2134 is offered in an 8 -pin plastic DIP and its performance and characteristics are guaranteed over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PIN CONNECTIONS

8-PIN
PLASTIC DIP
(P-Suffix)

SIMPLIFIED SCHEMATIC

ORDERING INFORMATION

PACKAGE	OPERATING TEMPERATURE PLASTIC 8-PIN
SSM2134P	XINDE

${ }^{*}$ XIND $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

Supply Voltage .. $\pm 22 \mathrm{~V}$
Differential Input Voltage (Note 1) $\pm 0.5 \mathrm{~V}$
Input Voltage (Note 2) ... $\pm 22 \mathrm{~V}$

Power Dissipation ... 300 mW
Derate Above $+24^{\circ} \mathrm{C}$.. $2.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Short-Circuit Duration (Note 3) Indefinite
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ NOTES:

1. The SSM-2134's inputs are protected by diodes. Current limiting resistors are not used in order to achieve low noise. If differential input voltage exceeds $\pm 0.6 \mathrm{~V}$, the input current should be limited to 10 mA .
2. For supply voltages less than $\pm 22 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Output maybe shorted to ground at $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Temperature and or supply voltages must be limited to ensure dissipation rating is not exceeded.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

\cdots \%			SSM-2134P			
Parameter	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage			-	0.3	2	
	V_{0}	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$	-	0.4	3	mV
Input Offset Current			-	15	300	
	los	$-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$	-	25	400	nA
Input Bias Current			-	350	1500	nA
	B	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$	-	500	2000	nA
Large-Signal Voltage Gain	$A_{\text {vo }}$	$R_{L} \geq 600 \Omega, V_{O}= \pm 10 \mathrm{~V}$	25	200	-	V/mV
		$\begin{aligned} & R_{L} \geq 600 \Omega, V_{O}= \pm 10 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \end{aligned}$	15	150	-	
Supply Current	I_{SY}	No Load	-	4.5	6.5	mA
Output Voltage Swing	V_{0}	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 600 \Omega$ $V_{S}= \pm 18 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 600 \Omega$	± 12	± 13	-	v
		$V_{S}= \pm 18 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} 2600 \Omega$	± 15	± 16	-	
Oumput Short-CIrcuit Current	$\mathrm{I}_{\text {Sc }}$	(Note 1)	-	60	-	mA
Input Resistance-Differential-Mode	$\mathrm{R}_{\text {IN }}$	(Note 2)	30	100	-	k Ω
Input Voltage Range	IVR		± 12	± 13	-	V
Common-Mode Rejection	CMR	$V_{C M}= \pm 12 \mathrm{~V}$	70	114	-	dB
Power Supply Rejection Ratio	PSRR		-	6	100	$\mu \mathrm{V} / \mathrm{N}$
Rise Time	$\mathrm{t}_{\text {p }}$	$\mathrm{R}_{\mathrm{L}} \geq 600 \Omega, \mathrm{C}_{\mathrm{C}}=22 \mathrm{pF}$	-	20	-	ns
Overshoot	OS	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pr}$	-	20	-	\%
AC Gain		$\begin{aligned} & C_{c}=0, f_{o}=10 \mathrm{kHz} \\ & C_{c}=22 p F_{0}=10 \mathrm{kHz} \end{aligned}$	-	6 2.2	-	V / mV
Unity-Gain Bandwidth	GBW	$\mathrm{C}_{\mathrm{C}}=22 \mathrm{pF}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	-	10	-	MHz
Slew Rate	SR	$\begin{aligned} & c_{c}=0 \\ & c_{c}=22 p F \end{aligned}$	-	13 6	-	V/ $/ \mathrm{s}$
Full Power Bandwidth	BW_{p}	$V_{0}= \pm 10 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=22 \mathrm{pF}$	-	95 200	-	kHz
		$c_{c}=0$	-	200	-	
Input Noise Voltage Densily	θ_{n}	$\mathrm{f}_{0}=30 \mathrm{~Hz}$	-	5.5	7.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}_{\mathrm{o}}=1 \mathrm{kHz}$	-	3.5	4.5	
Input Noise Current Density	i_{n}	$\mathrm{f}_{\mathrm{O}}=30 \mathrm{~Hz}$	-	2.5	-	$\mathrm{PA} \sqrt{\mathrm{Hz}}$
		$\mathrm{f}_{\mathrm{o}}=1 \mathrm{kHz}$	-	0.6	-	
Broadband Noise Figure	F_{N}	$\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega, \mathrm{f}=10 \mathrm{~Hz}$ to 20 kHz	-	0.7	-	dB
Total Harmonic Distortion	THD	$\mathrm{V}_{\text {iN }}=3 \mathrm{~V}_{\text {RMS }}, A_{V}=+1000, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	-	0.025	-	$\%$

NOTES:

1. Output may be shorted to ground at $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Temperature and/ or supply voltages mustbelimited to ensure dissipation rating is not exceeded.
2. Guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS Continued

TOTAL HARMONIC DISTORTION vs FREQUENCY

PSR vs TEMPERATURE

INPUT COMMON-MODE

INPUT BIAS CURRENT vs TEMPERATURE

SUPPLY CURRENT vs TEMPERATURE

SUPPLY CURRENT vs SUPPLY VOLTAGE

SHORT-CIRCUIT CURRENT vs TEMPERATURE

APPLICATIONS INFORMATION

PREAMPLIFIER-RIAA/NAB COMPENSATION

TEST CIRCUIT

FREQUENCY COMPENSATION AND OFFSET VOLTAGE ADJUSTMENT CIRCUIT

CLOSED-LOOP FREQUENCY RESPONSE

FEATURES

- Ultra-Low Voltage Noise 3.2nV/ $\sqrt{\mathrm{Hz}}$
- High Slew Rate ... 11V/ Hs
- Excellent Gain Bandwldth Product 30MHz
- Low Supply Current (Both Ampliflers)...................... 4mA
- Low Offset Voltage .. 500 HV
- High Gain $1,700 \mathrm{~V} / \mathrm{mV}$
- Compensated for Minimum GaIn of 3
- Low Cost
- Industry Standard 8-Pin Plastlc Dual PInout

APPLICATIONS

- Microphone Preamplifiers
- Audio Line Drivers
- Active Filters
- Phono and Tape Head Preampliflers
- Equalizers

ORDERING INFORMATION

	PACKAGE	OPERATING PLASTIC
8-PIN	16-PIN	TEMPERATURE
SOL	RANGE	
SSM2139P	SSM2139S	XIND*

* XIND $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

For availability on SOL package, contact your local sales office.

GENERAL DESCRIPTION

The SSM-2139 is a low noise, high-speed dual audio operational amplifier which has been internally compensated for gains equal to, or greater than three.
This monolithic bipolar op amp offers exceptional voltage noise performance of $3.2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (typical) with a guaranteed specification of only $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ MAX@ 1 kHz .
The high slew rate of $11 \mathrm{~V} / \mu \mathrm{s}$ and the gain-bandwidth product of 30 MHz is achieved without compromising the power consumption of the device. The SSM-2139 draws only 4 mA of supply current for both amplifiers.

Continued

PIN CONNECTIONS

(S-Suffix)

SIMPLIFIED SCHEMATIC (One of two amplifiers is shown.)

These characteristics make the SSM-2139 an ideal choice for use in high quality professional audio equipment; instrumentation, and control circuit applications.
The low offset voltage $\mathrm{V}_{\text {os }}$ of $500 \mu \mathrm{~V} \operatorname{MAX}(20 \mu \mathrm{~V}$ typical) and offset voltage drift of only $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ MAX assures system accuracy and eliminates the need for external $\mathrm{V}_{\text {oS }}$ adjustments.
The SSM-2139's outstanding open-loop gain of $1,700,000$ and its exceptional gain linearity eliminate incorrectable system nonlinearities and provides superior performance in high closed-loop gain applications, such as preamplifiers.

The SSM-2139 is offered in an 8-pin plastic DIP and Small Outline (SO) package and its performance and characteristics are guaranteed over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ... $\pm 18 \mathrm{~V}$
Differential Input Voltage (Note 2) $\pm 1.0 \mathrm{~V}$
Differential Input Current (Note 2) $\pm 25 \mathrm{~mA}$

Input Voltage .. Supply Voltage
Output Short-Circuit Duration Continuous
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to +150 C
Lead Temperature Range (Soldering, 60 sec) $300^{\circ} \mathrm{C}$ Junction Temperature (T_{1}) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature Range
SSM-2139 (P, S) .. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PACKAGE TYPE	$\theta_{\text {JA }}$ (Note 1)	$\theta_{\text {jc }}$	UNITS
8 -Pin Plastic DIP (P)	96	37	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Pin SOL (S)	92	27	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

1. $\theta_{\text {IA }}$ is specified for worst case mounting conditions, i.e., $\boldsymbol{\theta}_{I A}$ is specified for device in sockel for P-DIP package; $\Theta_{\mid A}$ is specified for device soldered to printed circuit board for SOL package.
2. The SSM-2139 inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low nolse performance. If differential voltage exceeds $\pm 1.0 \mathrm{~V}$, the input current should be limited to $\pm 25 \mathrm{~mA}$,

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN	SSM-2139 TYP	MAX	UNITS
Input Noise Voltage	$\theta_{\text {np-p }}$	0.1 Hz to 10 Hz (Note 1)	-	- 80	200	$\mathrm{nV} \mathrm{p}_{\mathrm{p}}$
Input Noise Voltage Density	θ_{n}	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & f_{\mathrm{O}}=100 \mathrm{~Hz} \\ & f_{\mathrm{O}}=1 \mathrm{kHz} \\ & \text { (Note 2) } \end{aligned}$	-	$\begin{aligned} & 3.6 \\ & 3.2 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \\ & 5.0 \end{aligned}$	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density	i_{n}	$\begin{aligned} & f_{0}=10 \mathrm{~Hz} \\ & f_{0}=100 \mathrm{~Hz} \\ & f_{0}=1 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & 1.1 \\ & 0.7 \\ & 0.6 \end{aligned}$	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Slew Rate	SR		7	11	-	$\mathrm{V} / \mathrm{\mu s}$
Gain Bandwldth Product	GBW	$\mathrm{f}_{\mathrm{o}}=100 \mathrm{kHz}$	-	30	-	MHz
Full Power Bandwidth	BWp	$\begin{aligned} & V_{O}=27 V_{p-p} \\ & R_{L}=2 k \Omega \text { (Note 3) } \end{aligned}$	-	130	-	kHz
Supply Current (All Amplifiers)	I_{SY}	No Load	-	4	6.5	mA
Total Harmonic Distortion	THD	$\begin{aligned} & R_{L}=2 k \Omega \\ & V_{O}=3 V_{\text {RMS }^{\prime}} \mathrm{t}_{\mathrm{O}}=1 \mathrm{kHz} \end{aligned}$	-	0.002	-	\%
Input Offset Voltage	V_{os}		-	20	500	$\mu \mathrm{V}$
Input Offset Current	l_{os}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	-	1	50	nA
Input Bias Current	I_{B}	$V_{C M}=0 \mathrm{~V}$	-	5	80	nA
Large-Signal Voltage Gain	$A_{\text {vo }}$	$\begin{aligned} & V_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	1000 500	$\begin{gathered} 1700 \\ 900 \\ 900 \end{gathered}$	-	V / mV
Output Voltage Swing	$\begin{aligned} & v_{0} \\ & v_{0^{+}} \\ & v_{0^{-}} \end{aligned}$	$\begin{aligned} & R_{L} \geq 2 k \Omega \\ & R_{L} \geq 600 \Omega \\ & R_{L} \geq 600 \Omega \end{aligned}$	± 12	$\begin{array}{r} \pm 13.5 \\ +13 \\ -10 \end{array}$	-	v
Common-Mode Rejection	CMR	$\mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$	94	115	-	dB

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Continued

PARAMETER	SYMBOL	CONDITIONS	SSM-2139			UNITS
			MIN	TYP	MAX	
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	105	120	-	dB
Input Voltage Range	IVR	(Note 4)	± 12.0	± 12.5	-	v
Output Short-Circult Current	$\mathrm{I}_{\text {sc }}$	Sink Source	-	20 40	-	mA
Input Resistance Common-Mode	$\mathrm{R}_{\text {INCM }}$		-	20	-	G
Input Resistance Differential-Mode	$\mathrm{R}_{\text {IN }}$		-	0.4	-	M
Input Capacitance	$\mathrm{C}_{\text {IN }}$		-	3	-	pF
Channel Separation	CS	$\begin{aligned} & V_{0}=20 V_{p-p} \\ & f_{0}=10 \mathrm{~Hz} \text { (Note 1) } \end{aligned}$	125	175	-	dB

NOTES:

1. Guaranteed but not 100% tested.
2. Sample tested.
3. $B W_{p}=S R / 2 \pi V_{\text {PEAK }}$
4. Guaranteed by CMR test.

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 15 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN	SSM-2139 TYP	MAX	UNITS
Supply Current (All Amplifiers)	I_{sr}	No Load	-	4.4	7.2	mA
Output Vollage Swing	v_{0}	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 12	± 13	-	v
Large-Signal Volitage Galn	Avo	$\begin{aligned} V_{O} & = \pm 10 \mathrm{~V} \\ R_{L} & =10 \mathrm{k} \Omega \\ R_{L} & =2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 500 \\ & 250 \end{aligned}$	$\begin{array}{r} 1400 \\ 700 \end{array}$	-	V / mV
Input Offset Voltage	V_{os}		\checkmark	45	700	${ }^{\mu} \mathrm{V}$
Average Input Offset Vollage Drift	$\mathrm{TCV}_{\text {os }}$		-	0.4	2.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input OHfet Current	los	$\mathrm{V}_{C M}=O \mathrm{~V}$	-	1.5	60	nA
Input Bias Current	I_{B}	$\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$	-	6	90	nA
Common-Mode Rejection	CMR	$\mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$	94	115	-	dB
Power Supply Rejection Ratio	PSRR	$V_{S}= \pm 4.5$ to $\pm 18 \mathrm{~V}$	100	115	-	dB
Input Voltage Range	IVR	(Note 1)	± 12	± 12.5	-	v
NOTES: 1. Guaranteed by CM						

TYPICAL PERFORMANCE CHARACTERISTICS

VOLTAGE NOISE DENSITY vs SUPPLY VOLTAGE

INPUT OFFSET VOLTAGE vs TEMPERATURE
 INPUT BIAS CURRENT vs COMMON-MODE VOLTAGE

0.1 Hz TO 10 Hz NOISE

TOTAL SUPPLY CURRENT vs SUPPLY VOLTAGE

TYPICAL PERFORMANCE CHARACTERISTICS Continued

FIGURE 1: High-Speed Differential Line Driver

FIGURE 2: Low Noise Amplifier

APPLICATIONS INFORMATION

HIGH-SPEED DIFFERENTIAL LINE DRIVER

The circuit of Figure 1 is a unique approach to a line driver circuit widely used in professional audio applications. With $\pm 18 \mathrm{~V}$ supplies, the line driver can deliver a differential signal of $30 \mathrm{Vp}-\mathrm{p}$ into a $1.5 \mathrm{k} \Omega$ load. The output of the differential line driver looks exactly like a transformer. Either output can be shorted to ground without changing the circuit gain of 5 , so the amplifier can easily be set for inverting, noninverting, or differential operation. The line driver can drive unbalanced loads, like a true transformer.

LOW NOISE AMPLIFIER

A simple method of reducing amplifier noise is by paralleling amplifiers as shown in Figure 2. Amplifier noise, depicted in Figure 3, is around $2 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 1 \mathrm{kHz}$ (R.T.I.). Gain for each paralleled amplifier and the entire circuit is 1000 . The 200Ω resistors limit circulating currents and provide an effective output resistance of 50Ω.

FIGURE 3: Noise Density of Low Noise Amplifier, $G=1000$

VOLTAGE AND CURRENT NOISE

The SSM-2139 is a low noise, high-speed dual op amp, exhibiting a typical voltage noise of only $3: 2 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 1 \mathrm{kHz}$. The exceptionally low noise characteristics of the SSM-2139 is in part achieved by operating the input transistors at high collector currents since the voltage noise is inversely proportional to the square root of the collector current. Current noise, however, is directly proportional to the square root of the collectar current. As a result, the outstanding voltage noise performance of the SSM-2139 is gained at the expense of current noise performance, which is normal for low noise amplifiers.

To obtain the best noise performance in a circuit, it is vital to understand the relationship between voltage noise (θ_{n}), current noise (i_{n}), and resistor noise (e_{1}).
TOTAL NOISE AND SOURCE RESISTANCE
The total noise of an op amp can be calculated by:
$E_{n}=\sqrt{\left(\theta_{n}\right)^{2}+\left(i_{n} R_{S}\right)^{2}=\left(\theta_{t}\right)^{2}}$
where:
$E_{n}=$ total input referred noise
$\theta_{n}=$ op amp voltage noise
$i_{n}=o p$ amp current noise
$e_{t}=$ source resistance thermal noise
$R_{s}=$ source resistance
The total noise is referred to the input and at the output would be amplified by the circuit gain.
Figure 4 shows the relationship between total noise at 1 kHz and source resistance. For $R_{s}<1 \mathrm{k} \Omega$, the total noise is dominated by the voltage noise of the SSM-2139. As R S_{S} rises above $1 \mathrm{k} \Omega$, total noise increases and is dominated by resistor noise rather than by voltage or current noise of the SSM-2139. When R_{s} exceeds $20 \mathrm{k} \Omega$, current noise of the SSM-2139 becomes the major contributor to total noise.

Figure 5 also shows the relationship between total noise and source resistance, but at 10 Hz . Total noise increases more quickly than shown in Figure 4 because current noise is inversely proportional to the square root of frequency. In Figure 5, current noise of the SSM-2139 dominates the total noise when $R_{s}>5 k \Omega$.
From Figures 4 and 5, it can be seen that to reduce total noise, source resistance must be kept to a minimum.

FIGURE 4: Total Noise vs. Source Resistance (Including Resistor Noise) at 1 kHz

FIGURE 5: Total Noise vs. Source Resistance (Including Resistor Noise) at 10 Hz

Figure 6 shows peak-to-peak noise versus source resistance over the 0.1 Hz to 10 Hz range. Once again, at low values of R_{s}, the voltage noise of the SSM-2139 is the major contributor to peak-to-peak noise with current noise the major contributor as R_{s} increases.
For reference, typical source resistances of some signal sources are listed in Table 1.

For further information regarding noise calculations, see "Minimization of Noise in Op Amp Applications," Application Note AN-15.

FIGURE 6: Peak-to-Peak Noise (0.1 Hz to 10 Hz) vs. Source Resistance (Includes Resistor Noise)

TABLE 1

DEVICE	SOURCE IMPEDANCE	COMMENTS
Strain Gauge	<500』	Typically used in low-frequency applicatons.
Magnetic Tapehead, Microphone	<1500 1	Low Ig very important to reduce self-magnetization problems when direct coupling is used. SSM-2139 I I_{B} can be neglected.:
Magnetic Phonograph Cartridge	<1500	Similar need for low I_{B} in direct coupled applications. SSM-2139 will not introduce any self-magnetization problem.
Lïnear Variable Differential Transformer	<1500 2	Used in rugged servo-feedback applications. Bandwidth of interest is 400 Hz to 5 kHz .

NOISE MEASUREMENTS -PEAK-TO-PEAK VOLTAGE NOISE

The circuit of Figure 7 is a test setup for measuring peak-to-peak voltage noise. To measure the 200 nV peak-to-peak noise specification of the SSM-2139 in the 0.1 Hz to 10 Hz range, the following precautions must be observed:

1. The device has to be warmed-up for at least five minutes. As shown in the warm-up drift curve, the offset voltage typically changes $2 \mu \mathrm{~V}$ due to increasing chip temperature after power-up. In the 10 -second measurement interval, these temperature-induced effects can exceed tens-of-nanovolts.
2. For similar reasons, the device has to be well-shielded from air currents. Shielding also minimizes thermocouple effects.

FIGURE 7: Peak-to-Peak Voltage Noise Test Circuit (0.1Hz to.10Hz)
3. Sudden motion in the vicinity of the device can also "feedthrough' to increase the observed noise.
4. The test time to measure 0.1 Hz to 10 Hz noise should not exceed 10 seconds. As shown in the noise-tester frequencyresponse curve of Figure 8, the 0.1 Hz corner is defined by only one pole. The test time of 10 seconds acts as a additional pole to eliminate noise contribution from the frequency band below 0.1 Hz .
5. A noise-voltage-density test is recommended when measuring noise on a large number of units. A 10 Hz noise-voltagedensity measurement will correlate well with a 0.1 Hz -to10 Hz peak-to-peak noise reading, since both results are determined by the white noise and the location of the $1 / \mathrm{f}$ corner frequency.
6. Power should be supplied to the test circuit by well bypassed low-noise supplies, e.g. batteries. These will minimze output noise introduced via the amplifier supply pins.

CHANNEL SEPARATION TEST CIRCUIT

FIGURE 8: 0.1 Hz to 10 Hz Peak-to-Peak Voltage Noise Test Circuit Frequency Response

FEATURES

- Very Low Voltage Nolse \qquad @ $100 \mathrm{~Hz}, 1 \mathrm{nV} / \sqrt{\mathrm{Hz}} \mathrm{MAX}$
- Excellent Current Gain Match 0.5\% TYP
- Tight $V_{B E}$ Match (V_{OS})
\qquad $200 \mu \mathrm{~V}$ MAX
- Outstanding Offset Voltage Drift \qquad $0.03 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ TYP
- High Gain-Bandwidth Product 200MHz TYP
- Low Cost
- Direct Replacement For LM394BN/CN

ORDERING INFORMATION

PACKAGE		OPERATING PLASTIC
8-PIN	SO	TEMPERATURE
SSM2210P	SSM2210 †	RANGE
XIND $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		XIND*

${ }^{\dagger}$ For availability on SO package, contact your local sales oflice.

GENERAL DESCRIPTION

The SSM-2210 is a dual NPN matched transistor pair specificially designed to meet the requirements of ultra-low noise audio systems.
With its extremely low input base spreading resistance (rbb' is typically 28Ω), and high current gain ($h_{\text {FE }}$ typically exceeds 600 $@ I_{C}=1 \mathrm{~mA}$), systems implementing the SSM-2210 can achieve outstanding signal-to-noise ratios. This will result in superior performance compared to systems incorporating commercially available monolithic amplifiers.

The equivalent input voltage noise of the SSM-2210 is typically only $0.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ over the entire audio bandwidth of 20 Hz to 20 KHz .
Excellent matching of the current gain ($\Delta \mathrm{h}_{\mathrm{FE}}$) to about 0.5% and low $V_{\text {os }}$ of less than $50 \mu \mathrm{~V}$ (typical) make it ideal for symmetrically balanced designs which reduce high order amplifier harmonic distortion.

Stability of the matching parameters is guaranteed by protection diodes across the base-emitter junction. These diodes prevent degradation of Beta and matching characteristics due to reverse biasing of the base-emitter junction.

The SSM-2210 is also an ideal choice for accurate and reliable current biasing and mirroring circuits. Furthermore, since a current mirror's accuracy degrades exponentially with mismatches of V_{BE} 's between transistor pairs, the low V_{OS} of the SSM-2210 will preclude offset trimming in most circuit applications.
The SSM-2210 is offered in an 8-pin epoxy DIP and 8-pin SO, its performance and characteristics are guaranteed over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PIN CONNECTIONS

8-PIN
PLASTIC DIP
(P-Suffix)

ABSOLUTE MAXIMUM RATINGS

Collector Current $\left(l_{c}\right)$.. 20mA
Emitter Current (I_{E}) ... 20mA
Collector-Collector Voltage ($\mathrm{BV}_{\mathrm{cc}}$) 40V
Collector-Base Voltage ($\mathrm{BV}_{\mathrm{cBO}}$) 40V
Collector-Emitter Voltage ($\mathrm{BV}_{\mathrm{CEO}}$) 40V
Emitter-Emitter Voltage ($\left.\mathrm{BV}_{\mathrm{EE}}\right)^{\text {E.. } 40 \mathrm{~V}}$
Operating Temperature Range....................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$

PACKAGE TYPE	$\Theta_{\text {JA }}$ (NOTE 1)	$\theta_{j c}$	UNITS
8-Pin Plastic DIP (P)	110	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SO (S)	160	44	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE:

1. $\Theta_{j A}$ is specified for worst case mounting conditions, Le., $\Theta_{j A}$ is specified for device in socket for P-DIP packages; $\boldsymbol{\theta}_{\mathrm{AA}}$ is speclfied for device soldered to printed circuit board for SO packages.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{C B}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	SSM-2210			UNITS
			MIN	TYP	MAX	
Current Gain	$\mathrm{h}_{\text {fe }}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$ (Note 1)	300	605	-	
		$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$	200	550	-	
Current Gain Match	$\Delta h_{\text {FE }}$	$10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{C}} \leq 1 \mathrm{~mA}$ (Note2)	-	0.5	5	\%
Noise Voltage Density	θ_{n}	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CB}}=0$ (Note 3)				
		$\mathrm{f}_{0}=10 \mathrm{~Hz}$	-	1.6	2	$\mathrm{nV} / \mathrm{NHz}$
		$\mathrm{f}_{0}=100 \mathrm{~Hz}$	-	0.9	1	
		$\mathrm{f}_{\mathrm{o}}=1 \mathrm{kHz}$	-	0.85	1	
		$\mathrm{f}_{0}=10 \mathrm{kHz}$	-	0.85	1	
Offset Vollage	$V_{\text {os }}$	$\begin{aligned} & V_{C B}=0 \\ & I_{C}=1 \mathrm{~mA} \end{aligned}$	-	10	200	$\mu \mathrm{V}$
Offset Voltage Change vs V	$\Delta V_{\text {os }} / \Delta V_{\text {ce }}$	$\begin{aligned} & 0 \leq V_{C B} \leq V_{\text {MAX }}(\text { Note 4) } \\ & 1 \mu A \leq I_{\mathrm{C}} \leq 1 \mathrm{~mA}(\text { Note 5) } \\ & \hline \end{aligned}$	-	10	50	$\mu \mathrm{V}$
Offset Voltage Change vs Collector Current	$\Delta V_{0 S} / \Delta i_{c}$	$\begin{aligned} & V_{C B}=0 V \\ & \left.1 \mu A \leq 1_{C} \leq 1 \mathrm{~mA} \text { (Note } 5\right) \end{aligned}$	-	5	70	$\mu \mathrm{V}$
Breakdown Voltage	$8 \mathrm{~V}_{\text {cEO }}$		40	-	-	V
Galn-Bandwidth Product	$\mathrm{I}_{\text {T }}$	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$	-	200	-	MHz
Collector-Base Leakage Current	$\mathrm{I}_{\text {cво }}$	$V_{C B}=V_{\text {MAX }}$	-	25	500	PA
Collector-Collector Leakage Current	$\mathrm{Icc}^{\text {c }}$	$V_{\text {cc }}=\mathrm{V}_{\text {MAX }}$ (Notes 6, 7)	-	35	500	PA
Collector-Emitter Leakage Current	Ices	$\begin{aligned} & \left.\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{MAX}} \quad \text { (Notes } 6,7\right) \\ & \mathrm{V}_{\mathrm{BE}}=0 \end{aligned}$	-	35	500	DA
Input Blas Current	I_{B}	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$	-	-	50	nA
Input Offiset Current	Ios	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$	-	-	6.2	nA
Collector Saturation Voitage	$V_{\text {CE(SAT) }}$	$\begin{aligned} & I_{C}=1 \mathrm{~mA} \\ & I_{B}=100 \mu A \end{aligned}$	-	0.05	0.2	V
Output Capacitance	C_{OB}	$\mathrm{V}_{\mathrm{CB}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-	23	-	pF
Bulk Resistance	${ }^{\text {b }}$ e	$10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{C}} \leq 10 \mathrm{~mA}$ (Note 6)	-	0.3	1.6:	Ω
Collector-Collector Capacitance	C_{CC}	$V_{C C}=0$	-	35	-	pF

NOTES:

1. Current gain is guaranteed with Collector-Base Voltage $\left(V_{C B}\right)$ swept from 0 to
$V_{\text {MAX }}$ at the indicated coilector currents.
2. Current Gain Match ($\Delta \mathrm{h}_{\mathrm{FE}}$) is defined as:

$$
\Delta h_{\mathrm{FE}}=\frac{100\left(\Delta \mathrm{l}_{\mathrm{B}}\right)\left(\mathrm{h}_{\mathrm{FE}} \mathrm{~min}\right)}{l_{\mathrm{C}}}
$$

3.. Noise Voltage Density is guaranteed, but not 100% tested
4. This is the maximum change in $V_{O S}$ as $V_{C B}$ is swept from $O V$ to 40 V .
5. Measured at $I_{C}=10 \mu A$ and guaranteed by design over the specified range of I_{C}. 6. Guaranteed by design.
7. $I_{C C}$ and $I_{C E S}$ are verified by measurement of $I_{C B O}$.

ELECTRICAL CHARACTERISTICS at $V_{C B}=15 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted.
PARAMETER

NOTES:

1. Current gain is guaranteed with Collector-Base Voltage $\left(\mathrm{V}_{\mathrm{CB}}\right)$ swept from 0 to $V_{M A X}$ at the indicated collector current.
2. Guaranteed by $V_{O S}$ test $\left(T C V_{O S} \sim \frac{V_{O S}}{T} * V_{B E}\right), T=298 K$ for $T_{A}=25^{\circ} \mathrm{C}$.
3. The initial zero offset vollage is established by adjusting the ratio of ${ }_{C}{ }^{\text {to }} \mathrm{I}_{\mathrm{C} 2}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. This ratio must be held to 0.003% over the entire temperature range Measurements are taken at the temperature extremes and $25^{\circ} \mathrm{C}$.
4. Guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTICS

$t=18, \mathrm{DIV}$

NOISE FIGURE vs COLLECTOR CURRENT

EMITTER-BASE LOG CONFORMITY

TYPICAL PERFORMANCE CHARACTERISTICS

TOTAL NOISE vs COLLECTOR CURRENT

GAIN BANDWIDTH vs COLLECTOR CURRENT

CURRENT GAIN vs COLLECTOR CURRENT

BASE-EMITTER-ONVOLTAGE vs COLLECTOR CURRENT

NOISE CURRENT DENSITY vs FREQUENCY

CURRENT GAIN vs TEMPERATURE

SMALL-SIGNAL INPUT RESISTANCE vs COLLECTOR CURRENT

TYPICAL PERFORMANCE CHARACTERISTICS Continued

EMITTER-BASE CAPACITANCE vs REVERSE BIAS VOLTAGE

FIGURE 1: A Low-Noise Wideband Amplifier

A VERY LOW-NOISE, WIDEBAND AMPLIFIER

Figure 1 illustrates a low-noise, wide-band amplifier consisting of a high slew rate JFET amplifier, the OP-44, and a cascoded differential preamplifier using the SSM-2210 transistor pair. The SSM-2210 achieves extremely low input voltage noise performance ($\theta_{\mathrm{n}} \sim 0.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$) via a large geometry transistor design which minimizes the base-spreading resistance. This, however, results in relatively higher collector-to-base capacitance (C_{OB}) than ordinary small-signal transistors. For high gain stages, the Miller effect of C_{OB} will limit the voltage gain bandwidth; resorting to a cascode configuration reduces the Miller feedback capacitance, improving stability, bandwidth, and reducing distortion due to base-width modulation. Additionally, cascoding
does not increase the noise figure of the overall amplifier system and reduces the high order harmonic distortion.

The circuit in Figure 1 balances the impedance symmetrically in the differential preamp. This serves to reject common-mode noise injected from the power supplies.
Although the SSM-2210's transistors are closely matched, an offset voltage error can still be created by imbalanced source impedances. Accordingly, a precision low-power amplifier (OP97), configured as a noninverting integrator is implemented which servos-out the offset voltage to less than $1.00 \mu \mathrm{~V}$ referred to the input of the amplifier.

FIGURE 2: Spectrum Analyzer Display of Wideband Amplifier Noise Spectral Density. $e_{n} \simeq 1.7 n \mathrm{~V} / \sqrt{\mathrm{Hz}}$

Figure 2 illustrates the composite amplifier's low voltage noise density of only $1.7 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 1 \mathrm{kHz}$. Figure 3 and Figure 4 show the excellent pulse response and an extremely low distortion of only 0.0015% over the audio bandwidth, respectively.

FIGURE 3: Small-Signal Pulse Response

FIGURE 4: Total Harmonic Distortion vs Frequency

FIGURE 5: D.I.M. vs Frequency

A special test was performed to check for dynamic or transient intermodulation distortion. A square wave of 3.15 kHz is mixed with a sine wave probe tone, and the resulting intermodulation distortion was found to be less than 0.002% (Figure 5). This is an impressively low value considering the amplifier's gain of 26 dB . Interestingly, the GBW product of the composite amplifier was 63 MHz which is much larger than that of the OP-44 by itself. This is made possible by the SSM-2210's cascoded preamplifier having a wide bandwidth and large signal gain.
The measured performance of this amplifier is summarized in Table 1.

TABLE 1: Measured Performance of the Low-Noise Wideband Amplifier

Slew-Rate	$40 \mathrm{~V} / \mu \mathrm{s}$
Gain-Bandwidth	63.6 MHz
Input Noise Voltage Density @ 1 kHz	$1.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
Output Voltage Swing	$\pm 13 \mathrm{~V}$
Input Offset Voltage	$10 \mu \mathrm{~V}$

$500 \mathrm{pV} / \sqrt{\mathrm{Hz}}$ AMPLIFIER

In situations where low output, low-impedance transducers are used, amplifiers must have very low voltage noise to maintain a good signal-to-noise ratio. The design presented in this application is an operational amplifier with only $500 \mathrm{pV} / \sqrt{\mathrm{Hz}}$ of broadband noise. The front end uses SSM-2210 low-noise dual transistors to achieve this exceptional performance. The op amp has superb DC specifications compatibie with high-precision transducer requirements, and AC specifications suitable for professional audio work.

PRINCIPLE OF OPERATION

The design configuration in Figure 6 uses an OP-27 op amp (already a low-noise design) preceded by an amplifier consisting of three parallel-connected SSM-2210 dual transistors. Base spreading resistance ((rbb) generates thermal noise which is reduced by a factor of $\sqrt{3}$ when the input transistors are parallel connected. Schottky noise, the other major noise-generating mechanism, is minimized by using a relatively high collector current (1mA per device). High current ensures a low dynamic emitter resistance, but does increase the base current and its associated current noise. Higher current noise is relatively unimportant when low-impedance transducers are used.

FIGURE 6: Simplified Schematic

CIRCUIT DESCRIPTION

The detailed circuit is shown in Figure 7. A total input-stage emitter current of 6 mA is provided by Q_{4}. The transistor acts as a true current source to provide the highest possible commonmode rejection. R_{1}, R_{2}, and R_{3} ensure that this current splits equally among the three input pairs. The constant current in Q_{4} is set by using the forward voltage of a GaAsP light-emitting diode as a reference. The difference between this voltage and the base-emitter voltage of a silicon transistor is predictable and constant (to within a few percent) over the military temperature range. The voltage difference, approximately 1 V , is impressed
across the emitter resistor R_{12} which produces a temperaturestable emitter current.
R_{6} and C_{1} provide phase compensation for the amplifier and are sufficient to ensure stability at gains of ten and above.
R_{7} is an input offset trim that provides approximately $\pm 300 \mu \mathrm{~V}$ trim range. The very low drift characteristics of the 'SSM-2210 make it possible to obtain drifts of less than $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ when the offset is nulled close to zero. If this trim is not required, the R_{4}, R_{7}, and R_{8} network should be omitted and R_{5} / R_{9} connected directly to $\mathrm{V}+$.

FIGURE 7: Complete Amplifier Schematic

AMPLIFIER PERFORMANCE

The measured performance of the op amp is summarized in Table 2. Figure 8 shows the broadband noise spectrum which is flat at about $500 \mathrm{pV} / \sqrt{\mathrm{Hz}}$. Figure 9 shows the low-frequency spectrum which illustrates the low $1 / \mathrm{f}$ noise corner at 1.5 Hz . The low-frequency characteristic in the time domain from 0.1 Hz to 10 Hz is shown in Figure 10; peak-to-peak amplitude is less than 40 VV .

TABLE 2: Measured Performance of the Op Amp

Input Noise		
Voltage Density at 1 kHz		$500 \mathrm{pV} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage from 0.1 Hz to 10 Hz		
		$40 n V_{p-p}$
Input Noise Current at 1kHz		$1.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$\mathrm{G}=10$	3 MHz
Gain-Bandwidth	$\mathrm{G}=100$	600 kHz
	$\mathrm{G}=1000$	150 kHz
Slew Rate		$2 \mathrm{~V} / \mathrm{\mu s}$
Open-Loop Gain		3×10^{7}
Common-Mode Rejection		130dB
Input Bias Current		$3 \mu \mathrm{~A}$
Supply Current		10 mA
Nulled TCV ${ }_{\text {os }}$		$0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
T.H.D. at 1 kHz	$\mathrm{G}=1000$	0.002\%

FIGURE 8: Spectrum Analyzer Display - Broadband

FIGURE 9: Spectrum Analyzer Display - Low Frequency

FIGURE 10: Oscilloscope Display

CONCLUSION

Using SSM-2210 matched transistor pairs operating at a high current level, it is possible to construct a high-performance, lownoise operational amplifier. The circuit uses a minimum of components and achieves performance levels exceeding monolithic amplifiers.

FIGURE'11: Fast Logarithmic Amplifier

FAST LOGARITHMIC AMPLIFIER

The circuit of Figure 11 is a modification of a standard logarithmic amplifier configuration. Running the SSM-2210 at 2.5 mA per side (full-scale) allows a fast response with wide dynamic range. The circuit has a 7 decade current range, a 5 decade voltage range, and is capable of 2.5μ s settling time to 1% with a 1 to 10 V step.

The output follows the equation:
$V_{0}=\frac{R_{3}+R_{2}}{R_{2}} \frac{k T}{q} \ln \frac{V_{\text {REF }}}{V_{I N}}$
To compensate for the temperature dependence of the kT / q term, a resistor with a positive $0.35 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient is chosen for R_{2}.
The output is inverted with respect to the input, and is nominally $-1 \mathrm{~V} /$ decade using the component values indicated.
FEATURES

- Very Low Voltage Noise @ 100Hz, 1nV/ $\sqrt{\mathrm{Hz}}$ Max
- High Gain Bandwidth \qquad 190MHz Typ
- Excellent Galn \qquad $@ I_{c}=1 \mathrm{~mA}, 165$ Typ
- Tight Gain Matching \qquad 3\% Max
- Outstanding Logarithmic Conformance .. $\mathrm{r}_{\mathrm{BE}}=0.3 \Omega$ Typ
- Low Offset Voltage \qquad 200 1 V Max
- Low Cost

APPLICATIONS

- Microphone Preampliflers
- Tape-Head Preampllflers
- Current Sources and Mirrors
- Low Noise Precision Instrumentation
- Voltage Controlled Amplifiers/Multipliers

ORDERING INFORMATION

	PACKAGE	OPERATING TEMPERATURE RLASTIC $8-P I N$

* $\mathrm{XIND}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\dagger For availability of SO package, contact your local sales office.

GENERAL DESCRIPTION

The SSM-2220 is a dual low noise matched PNP transistor which has been optimized for use in audio applications.
The ultra-low input voltage noise of the SSM-2220 is typically only $0.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ over the entire audio bandwidth of 20 Hz to 20 kHz . The low noise, high bandwidth (190 MHz), and Offset Voltage of ($200 \mu \mathrm{~V}$ Max) make the SSM-2220 an ideal choice for demanding low noise preamplifier applications.

The SSM-2220 also offers excellent matching of the current gain $\left(\Delta h_{\text {FE }}\right)$ to about 0.5% which will help to reduce the high order amplifier harmonic distortion. In addition, to insure the long-term stability of the matching parameters, internal protection diodes across the base-emitter junction were used to clamp any reverse base-emitter junction potential. This prevents a base-emitter breakdown condition which can result in degradation of gain and matching performance due to excessive breakdown current.
Another feature of the SSM-2220 is its very low bulk resistance of 0.3Ω typically which assures accurate logarithmic conformance.

The SSM-2220 is offered in 8-pin plastic, dual-in-line, and SO and its performance and characteristics are guaranteed over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PIN CONNECTIONS

ABSOLUTE MAXIMUM RATINGS
Collector-Base Voltage ($\mathrm{BV}_{\mathrm{CBO}}$) 36 V
Collector-Emitter Voltage ($\mathrm{BV}_{\mathrm{CEO}}$) 36 V
Collector-Collector Voltage ($\mathrm{BV}_{\mathrm{cC}}$) 36 V
Emitter-Emitter Voltage ($\mathrm{BV}_{\mathrm{EE}}$) 36 V
Collector Current $\left(l_{c}\right)$ 20 mA
Emitter Current $\left(l_{E}\right)$ 20 mA
Operating Temperature Range
SSM-2220P $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SSM-2220S $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Junction Temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$ Junction Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

PACKAGE TYPE	$\Theta_{\mathrm{JA}}($ Note 1)	$\boldsymbol{\theta}_{\mathrm{Jc}}$	UNITS
8 -Pin Plastic DIP $($ P $)$	103	43	${ }^{\circ} \mathrm{CNW}$
8 -Pin SO (S)		158	43

NOTE:

1. Θ_{AA} is specified for worst case mounting conditions, l.e., $\boldsymbol{\theta}_{\mathrm{A}}$ is specitied for device in socket for P-DIP package; $\boldsymbol{\theta}_{\mathrm{jA}}$ is specilied for device soldered to printed circuit board for SO packages.

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETEA	SYMBOL	CONDITIONS	MIN	$\begin{gathered} \text { SSM-2220 } \\ \text { TYP } \end{gathered}$	MAX	UNITS
CurrentGain (Note 1)	$h_{\text {FE }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=0 \mathrm{~V},-36 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \\ & 60 \end{aligned}$	$\begin{array}{r} 165 \\ \hdashline \quad 150 \\ 120 \end{array}$	$\therefore-$	
CurrentGain Matching (Note 2)	$\Delta h_{\text {FE }}$	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V}$	-	0.5	6	\%
Nolse Voltage Density (Note 3)	${ }^{\text {® }} \mathrm{N}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=1 \mathrm{~mA}, V_{C B}=0 \mathrm{~V} \\ & f_{0}=10 \mathrm{~Hz} \\ & f_{0}=100 \mathrm{~Hz} \\ & f_{0}=1 \mathrm{kHz} \\ & f_{0}=10 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & 0.8 \\ & 0.7 \\ & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Offset Voltage (Note 4)	$V_{\text {os }}$	$\mathrm{V}_{\mathrm{CB}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	-	40	200	$\mu \mathrm{V}$
Offset Voltage Change vs. Collector Voltage	$\Delta V_{\text {OS }}{ }^{\prime \prime} V_{\text {cB }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CB1}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CB2}}=-36 \mathrm{~V} \end{aligned}$	-	11	200	$\mu \mathrm{V}$
Offset Voltage Change vs. Collector Current	$\Delta V_{o s} / \Delta l_{\text {c }}$	$\begin{aligned} & V_{C B}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{C} 1}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C} 2}=1 \mathrm{~mA} \end{aligned}$	-	12	75	$\mu \mathrm{V}$
Offset Current	Ios	$\mathrm{I}_{C}=100 \mu \mathrm{~A}, \mathrm{~V}_{C B}=0 \mathrm{~V}$	-	6	45	nA
Collector-Base Leakage Current	${ }^{\text {cbo }}$	$V_{C B}=-36 \mathrm{~V}=\mathrm{V}_{\text {MAX }}$		50	400	PA
Bulk Resistance	${ }^{\text {r BE }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cB}}=0 \mathrm{~V}, \\ & 10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{c}} \leq 1 \mathrm{~mA} \end{aligned}$		0.3	0.75	Ω
Collector Saturation Voltage	$V_{C E(S A T)}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=100 \mu \mathrm{~A}$	-	0.026	0.1	V

NOTES:

1. Current gain is measured at collector-base voltages (V_{CB}) swept from 0 to $\mathrm{V}_{\text {MAX }}$ at indicated collector current. Typicals are measured at $\mathrm{V}_{\mathrm{CB}}=0 \mathrm{~V}$.
2. Current gain matching ($\Delta \mathrm{h}_{\mathrm{FE}}$) is defined as:
$\Delta h F E=\frac{100(\Delta \mid \mathrm{B}) \mathrm{hFE}(\mathrm{MIN})}{\mathrm{l} \mathrm{C}}$
3. Sample tested. Noise tested and specified as equivalent input voltage for each transistor.
4. Offser voltage is defined as:
$V_{O S}=V_{B E 1}-V_{B E 2}$
where $V_{O S}$ is the differential voltage for
$\mathrm{I}_{\mathrm{C} 2}=\mathrm{IC}_{\mathrm{C}}: \mathrm{VOS}_{\mathrm{O}}=\mathrm{V}_{\mathrm{BE}} 1-\mathrm{V}_{\mathrm{BE} 2}=\frac{\mathrm{KT}}{\mathrm{q}}$ in $\left(\frac{\mathrm{IC} 1}{\mathrm{IC}_{2}}\right)$

ELECTRICAL CHARACTERISTICS at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN	$\begin{gathered} \text { SSM-2220 } \\ \text { TYP } \end{gathered}$	MAX	UNITS
Current Gain	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & V_{C B}=0 \mathrm{~V},-36 \mathrm{~V} \\ & I_{C}=1 \mathrm{~mA} \\ & I_{C}=100 \mu \mathrm{~A} \\ & I_{C}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 120 \\ & 105 \\ & 90 \end{aligned}$	-	
Offset Vollage	V_{0}	$t_{C}=100 \mu A, V_{C B}=0 V$	-	30	265	$\mu \mathrm{V}$
Offset Voltage Drift (Note 1)	$\mathrm{TCV}_{\mathrm{OS}}$	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V}$	-	0.3	1.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Current	l_{os}	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{C B}=0 \mathrm{~V}$	-	10	200	nA
Breakdown Voltage	$\mathrm{BV}_{\text {ceo }}$		36	-	-	V

NOTE:

1. Guaranteed by $V_{O s}$ test $\left(T C V_{O S}=V_{O S} / T\right.$ for $\left.V_{O S} \ll V_{B E}\right)$ where $T=298^{\circ} \mathrm{K}$ for $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.

TYPICAL PERFORMANCE CHARACTERISTICS

TOTAL NOISE vs COLLECTOR CURRENT

NOISE FIGURE vs COLLECTOR CURRENT

NOISE VOLTAGE DENSITY vs COLLECTOR CURRENT

EMITTER-BASE LOG CONFORMITY

TYPICAL PERFORMANCE CHARACTERISTICS Continued

FIGURE 1a: Super Low Noise Amplifier

APPLICATIONS INFORMATION

SUPER LOW NOISE AMPLIFIER

The circuit in Figure 1ais a super low noise amplifier with equivalent input voltage noise of $0.32 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. By paralleling SSM2220 matched pairs, a further reduction of amplifier noise is attained by a reduction of the base spreading resistance by a factor of 3 , and consequently the noise by $\sqrt{3}$. Additionally, the shot noise contribution is reduced by maintaining a high collector current (2mA/device) which reduces the dynamic emitter resistance and decreases voltage noise. The voltage noise is inversely proportional to the square root of the stage current, and current noise increases proportionally to the square root of the stage current. Accordingly, this amplifier capitalizes on voltage noise reduction techniques at the expense of increasing the current noise. However, high current noise is not usually important when dealing with low impedance sources.

This amplifier exhibits excellent full power AC performance, 0.08% THD into a 600Ω load, making it suitable for exacting audio applications (see Figure 1b).

FIGURE 1b: Super Low Noise Amplifier - Total Harmonic Distortion

FIGURE 2: Super Low Noise Amplifier

LOW NOISE MICROPHONE PREAMPLIFIER

Figure 2 shows a microphone preamplifier that consists of a SSM-2220 and a low noise op amp. The input stage operates at a relatively high quiescent current of 2 mA per side, which reduces the SSM-2220 transistor's voltage noise. The $1 / f$ corner is less than 1 Hz . Total harmonic distortion is under 0.005% for a 10 Vp -p signal from 20 Hz to 20 kHz . The preamp gain is 100 , but can be modified by varying R_{5} or $R_{6}\left(V_{\text {OUT }} T V_{I N}=R_{5} / R_{6}+1\right)$.

A total input stage emitter current of 4 mA is provided by Q_{2}. The constant current in Q_{2} is set by using the forward voltage of a GaAsP LED as a reference. The difference between this voltage and the $V_{B E}$ of a silicon transistor is predictable and constant (to a few percent) over a wide temperature range. The voltage difference, approximately 1 V , is dropped across the 250Ω resistor which produces a temperature stabilized emitter current.

FIGURE 3: SSM-2220 Voltage Noise Measurement Circuit

SSM-2220 NOISE MEASUREMENT

All resistive components (Johnson noise, $\theta_{n}^{2}=4 \mathrm{kTBR}$, or $\theta_{\mathrm{n}}=$ $0.13 \sqrt{R} \mathrm{nV} / \sqrt{\mathrm{Hz}}$, where R is in $\mathrm{k} \Omega$) and semiconductor junctions (Shot noise, caused by current flowing through a junction, produces voltage noise in series impedances such as transis-tor-collector load resistors, $I_{n}=0.556 \sqrt{1 \mathrm{pA}} / \sqrt{\mathrm{Hz}}$ where I in $\mu \mathrm{A}$) contribute to the system input noise.
Figure 3 illustrates a technique for measuring the equivalent input noise voltage of the SSM-2220. 1 mA of stage currentis used to bias each side of the differential pair. The $5 \mathrm{k} \Omega$ collector resistors noise contribution is insignificant compared to the voltage noise of the SSM-2220. Since noise in the signal path is referred back to the input, this voltage noise is attenuated by the gain of the circuit. Consequently, the noise contribution of the collector load resistors is only $0.048 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. This is considerably less than the typical $0.8 \mathrm{n} V / \sqrt{\mathrm{Hz}}$ inputnoise voltage of the SSM-2220 transistor.

The noise contribution of the OP-27 gain stages is also negligible due to the gain in the signal path. The op amp stages amplify the input referred noise of the transistors to increase the signal strength to allow the noise spectral density ($\mathrm{e}_{\mathrm{in}} \times 10000$) to be measured with a spectrum analyzer. And, since we assume equal noise contributions from each transistor in the SSM2220, the output is divided by $\sqrt{2}$ to determine a single transistor's input noise.
Air currents cause small temperature changes that can appear as low frequency noise. To eliminate this noise source, the measurement circuit must be thermally isolated. Effects of extraneous noise sources must also be eliminated by totally shielding the circuit.

FIGURE 4: Cascode Current Source

CURRENT SOURCES

A fundamental requirement for accurate current mirrors and active load stages is matched transistor components. Due to the excellent V_{BE} matching (the voltage difference between V_{BE} 's required to equalize collector current) and gain matching, the SSM-2220 can be used to implement a variety of standard current mirrors that can source current into a load such as an amplifier stage. The advantages of current loads in amplifiers versus resistors is an increase of voltage gain due to higher impedances, larger signal range, and in many applications, a wider signal bandwidth.
Figure 4 illustrates a cascode current mirror consisting of two SSM-2220 transistor pairs.

The cascode current source has a common base transistor in series with the output which causes an increase in output impedance of the current source since $V_{C E}$ stays relatively constant. High frequency characteristics are improved due to a reduction of Miller capacitance. The small-signal output impedance can be determined by consulting n_{oe} vs. Collector Current" typical graph. Typical output impedance levels approach the performance of a perfect current source.
Considering a typical collector current of $100 \mu \mathrm{~A}$, we have:
$\mathrm{r}_{\propto}=\frac{1}{1.0 \mu \mathrm{MHOS}}=1 \mathrm{M} \Omega$.
Q_{2} and Q_{3} are in series and operate at the same current level, so the total output impedance is:
$R_{O}=h_{F E}{ }^{r_{0}}{ }_{\alpha} \approx(160)(1 \mathrm{M} \Omega)=160 \mathrm{M} \Omega$.

CURRENT MATCHING

The objective of current source or mirror design is generation of currents that are either matched or must maintain a constant ratio. However, mismatch of base-emitter voltages cause output current errors. Consider the example of Figure 5 . If the resistors and transistors are equal and the collector voltages are the same, the collector currents will match precisely. Investigating the current-matching errors resulting from a non-zero $V_{\text {OS }}$, we define Δl_{c} as the current error between the two transistors.
Graph 5 describes the relationship of current matching errors versus offset voltage for a specified average current I_{c}. Note that since the relative error between the currents is exponentially proportional to the offset voltage, tight matching is required to design high accuracy current sources. For example, if the offset voltage is 5 mV at $100 \mu \mathrm{~A}$ collector current, the current matching error would be 20%. Additionally, temperature effects such as offset drift ($3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per mV of V_{OS}) will degrade performance if Q_{1} and Q_{2} are not well matched.

FIGURE 5a: Current Matching Circuit

FIGURE 5b: Current Matching Accuracy \% vs. Offset Voltage

FEATURES

- Multiple Output Options (Absolute Value, RMS, Log RMS, Log Absolute Value, Average Absolute Value)
- Wide Dynamic Range \qquad 100dB
- Prebias Option for Fast Response at Low Signal Levels
- On-Chip Log Output Amplifier
- Optional Internal Log Output Temperature Compensation
- Low Drift Internal Voltage Reference
- Low Cost

APPLICATIONS

- Audio Dynamic Range Processors
- Audio Metering Systems
- Digital Multimeters
- Noise Testers
- Panel Meters
- Power Meters
- Process Control Systems

GENERAL DESCRIPTION

The SSM-2110 is a true RMS-to-DC converter designed to provide multiple linear and logarithmic output options. The linear outputs, true RMS and absolute value, can be obtained simultaneously with the absolute value output configurable to give a peak function. The logarithmic outputs can provide \log RMS, \log absolute value or log average absolute value. Full on-chip temperature compensation is available for each output option.

Continued

PIN CONNECTIONS

FUNCTIONAL DIAGRAM

The SSM-2110 has been granted mask work protection under the Semiconductor Chip. Protection Act of 1983.

GENERAL DESCRIPTION Continued

The SSM-21 10 has a dynamic range of 100 dB . A unique on-chip prebias circuit enables the users to trade dynamic range at low signal levels for a faster response time. As a precision level detector, the SSM-2110 has applications in digital multimeters, panel meters, process control and audio systems.

ORDERING INFORMATION

PACKAGE	OPERATING PLASTIC 18-PIN
TEMPERATURE	
RSM2110P	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS			
Supply Voltage .. $\pm 18 \mathrm{~V}$			
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Lead Temperature Range			
(Soldering, 60 sec) \qquad $+150^{\circ} \mathrm{C}$			
Operating Temperature Range - $25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$			
Package type	$\boldsymbol{\theta}_{\boldsymbol{\mu}}($ Note 1)	θ_{jc}	UN
18 -Pin Plastic DIP (P)	75	33	${ }^{\circ} \mathrm{C}$
NOTE:			
$\boldsymbol{\theta}_{\mathrm{j}}$ is specified for device in socket			

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{R}_{\text {SCALE }}=4.7 \mathrm{k} \Omega$, unless otherwise noted.

PARAMETER	CONDITIONS	SSM-2110			
		MIN	TYP	HAX	UNITS
Dynamic Range \quad DR	$30 n A_{p-p} \leq I_{\text {INp-p }} \leq 3 m A_{p-p}$	100	110	-	dB
Unadjusted Gain	$\mathrm{I}_{\mathrm{iN}}= \pm 1 \mathrm{~mA}$	0.95	1.0	1.05	
Error (Mean or RMS)		-	-	± 0.5	dB
Output Offset Current loos	$\mathrm{I}_{1 \mathrm{~N}}= \pm 1 \mathrm{~mA}$	-	5	15	nA
${ }_{\text {los } \text { shift }} \quad \Delta l_{\text {oos }}$	$\mathrm{R}_{\text {PREBIAS }}=3 \mathrm{M} \boldsymbol{\Omega}$	-	50	120	nA
Crest Factor @ $\mathrm{ImA}_{\text {RMS }}$. CF	For 0.1dB Additional Error For 0.5dB Addltional Error For 1.0 dB Additional Error	-	$\begin{array}{r} 2.5 \\ 5 \quad 5 \end{array}$	-	
RMS Filter Time Constant $\quad{ }^{\text {c }}$ CON	$I_{\text {RMS }}>10 \mu A_{\text {PMS }}$		$11 \mathrm{k} \Omega \times$		
Frequency Response (Sine Wave)					
For 0.1dB Additional Error	$\begin{aligned} & I_{\mathbb{N}}>\operatorname{limA}_{\text {RMS }} \\ & \mathbb{I}_{\mathbb{N}}>10 \mu A_{\text {RMS }} \\ & I_{\mathbb{N}}>1 \mu A_{\text {RMS }} \end{aligned}$	-	$\begin{array}{r} 400 \\ 10 \\ 2 \end{array}$	-	
For 0.5dB Additional Error . BW	$\begin{aligned} & I_{I_{N}}>1 \mathrm{~mA}_{\text {RMS }} \\ & I_{I_{N}}>10 \mu A_{\text {RMS }} \\ & I_{I_{N}}>1 \mu A_{\text {RMS }} \end{aligned}$	-	$\begin{array}{r} 1000 \\ 50 \\ 7.5 \end{array}$	-	kHz
-3dB Bandwidth	$\begin{aligned} & I_{\mathbb{N}}>1 m A_{\text {RMS }} \\ & I_{I N}>10 \mu A_{R M S} \\ & I_{\mathbb{N}}>1 \mu A_{R M S} \end{aligned}$	-	$\begin{array}{r} 1500 \\ 300 \\ 50 \end{array}$	-	:
Log Amp Output Offset Current (Pin 9)		-	± 3.3	± 13	$\mu \mathrm{A}$
Max Log Amp Ourput (Pin 9) Iout -LOG		± 250	± 265	± 288	$\mu \mathrm{A}$
Log Scale Factor (Pin 2 or Pin 6)		-	+6	-	$\mathrm{mV} / \mathrm{dB}$
Log Mode Zero Crossing (Mean or RMS, Pin 9)	RMS In To Get Zero Out (See Figure 7])	-	10	-	$\mu \mathrm{A}$
Log Amp Linearity (Pin 9)	$-240 \mathrm{mV}<\mathrm{V}_{\text {PIN } 10}-\mathrm{V}_{\text {PIN } 11}<+240 \mathrm{mV}$	-	0.1	0.25	dB
Log Output Tempco T_{C}	$0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C}$	-	± 75	-	ppm/ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {fEF }}$ (Pin 3 to V -)		6.7	7.5	7.8	V

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$ and $R_{\text {SCALE }}=4.7 \mathrm{k} \Omega$, unless otherwise noted. Continued

		SSM-2110				
Parameter	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Positive Supply Current			480	-	920	$\mu \mathrm{A}$
Negative Supply Current	$\begin{aligned} & \mathrm{s}^{+} \\ & \mathrm{s}^{-} \end{aligned}$	$\mathrm{I}_{\mathrm{N}}=0$	2.1	-	3.3	mA
Supply Voltage Range	V_{s}		± 12	-	± 18	V

Specifications subject to change; consult latest data sheet.

FIGURE 1: RMS Output Circuit

THE RMS COMPUTING LOOP

The RMS section of the SSM-2110 consists of an implicit RMS computing loop whose output follows the equation:
$10=\frac{1 N^{2}}{\overline{10}}$

where \bar{I}_{O} is the average of l_{O}

The time constant for averaging is determined by the value of the averaging cap $C_{\text {RMS }}$ (on pin 13) and an internal resistor whose effective value is $10.8 \mathrm{k} \Omega$. A very low leakage capacitor must be used for $\mathrm{C}_{\text {RMS }}$ to prevent limiting the dynamic range. Increasing the value of $\mathrm{C}_{\text {RMS }}$ will result in lower levels of ripple on the RMS Output at the expense of an increase in settling time for a step change in the input signal amplitude. This is a proportional relationship where increasing the value of $\mathrm{C}_{\mathrm{RMS}}$ tenfold results in a tenfold increase in the settling time.

For the circuit in Figure 1, the peak-to-peak ripple approximately follows the equation:
$V_{\text {RIPPLE }(p-p)}=\frac{2 \sqrt{2} \times V_{\text {RMS }}}{4 \pi f R_{I N T} C_{\text {RMS }}} \times \frac{R_{\text {RMS }}}{R_{I N}}$

where $R_{\text {INT }} \approx 10.8 \mathrm{k} \Omega$

The settling time of the SSM-2110 also depends on the frequency of the signal being processed. It takes approximately 100 ms for a $300 \mu \mathrm{Ap}-\mathrm{p}, 50 \mathrm{~Hz}$ signal to settle within 0.1% when $C_{R M S}=1 \mu \mathrm{~F}$, and it takes 10 ms for a 500 Hz signal to settle within the same value. The general rule is a tenfold increase in frequency causes a tenfold reduction in settling time. The settling time also varies with the amplitude of the signal. The larger the signal level the faster the setting time.

INPUT

The INPUT (pin 17) is an AC virtual ground with approximately +1.3 V DC offset voltage. The useful dynamic range of input current the device can process is 100 dB (3 mAp -p to $30 \mathrm{nAp}-\mathrm{p}$). The input RC network is usually chosen to allow close to 20 dB of headroom in order to process high crest factor signals and provide a DC block below a given frequency band. Since in every case the ratio of $R_{\text {OUT }}\left(R_{A V}\right.$ and $\left.R_{\text {RMS }}\right)$ to $R_{\text {IN }}$ determines the overall gain of the circuit, $\mathrm{R}_{\text {out }}$ must also be considered when selecting the low frequency breakpoint. The maximum recommended values for $R_{\text {OUT }}$ vary from $4 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ for the circuits in Figures 1, 3, 4, and 5.
Referring to the circuit in Figure 3, and assuming a gain of 1 is desired, $R_{I N}$ should be set to $4 k \Omega\left(R_{R M S}\right.$ and $\left.R_{A V}=4 k \Omega\right)$. Based on this value of $R_{I N}, C_{I N}$ should be $2 \mu F$ to place the subsonic filter pole at 20 Hz . If you wish to limit the lower frequency to something other than 20 Hz then C_{IN} should be changed accordingly. The low frequency pole is governed by the simple equation
$f_{M I N}=1 / 2 \pi R_{I N} C_{i N}$
$\mathrm{C}_{\text {IN }}$ should be a very low leakage capacitor to avoid impairing the dynamic range at low signal levels (many electrolytic types will not work).
The choice of $R_{I N}=10 \mathrm{k} \Omega$ in Figure 1 is good for processing 0dBV reference signals. Given a nominal signal level of OdBV $\left(2.828 \mathrm{~V}-\mathrm{p}=1 \mathrm{~V}_{\mathrm{RMS}}\right)$, this voltage across the $10 \mathrm{k} \Omega$ input resistor gives a nominal input current of $283 \mu \mathrm{Ap}$-p, which allows 20 dB of headroom. The three other common choices for $R_{\mathbb{N}}$ are $4 \mathrm{k} \Omega$, $5 \mathrm{k} \Omega$ and $8 \mathrm{k} \Omega$, which provide $12 \mathrm{~dB}, 14 \mathrm{~dB}$, and 18 dB respectively.
The values of $\mathrm{C}_{\mathrm{IN}}, \mathrm{R}_{\mathbb{I N}}$ and $\mathrm{R}_{\mathrm{OUT}}$ can be changed accordingly to vary output levels to system requirements.

FIGURE 2: Normalized Time Constant Relative to $1 \mathrm{~mA}_{\text {RMs }}$

The PREBIAS pin (pin 18), can be used to increase the speed of the RMS computing loop at low signal levels at some expense to the dynamic range. Below a $10 \mu \mathrm{~A}_{\mathrm{RMS}}$ input level, the time constant of the RMS loop will increase from its nominal value by a factor of 10 for every 20 dB drop in level.
By use of the PREBIAS pin, one can ensure that the loop time constant will not increase above a chosen maximum as the signal level continues to decrease. The equation relating the maximum time constant increase to the value of $R_{\text {PREBIAS }}$ connected between pin 18 and V - is given by:
$\frac{\tau_{\text {MAX }}}{\tau_{\text {NOM }}}=\frac{10 \mu A \times R_{\text {PREEAS }}}{6.8 \mathrm{~V}} \quad$ (See Figure 2)

FIGURE 3: Simple RMS/Absolute Value/Average Absolute Value Configuration

TYPICAL VALUES:
$\mathbf{R}_{1 \mathrm{H}}=8 \mathrm{~K} \Omega$
$R_{A V}=8 \mathrm{k} \Omega$
$\mathrm{C}_{\mathrm{iN}}=1 \mu \mathrm{~F}$

FIGURE 4: Absolute Value and Average Absolute Value Output

FIGURE 5: Peak Voltage Output

LINEAR OUTPUTS (ABSOLUTE VALUE AND RMS)

The instantaneous absolute value of the input signal appears as a current absolute value pin (pin 1). The true RMS value of the input signal similarly appears as a current into the RMS pin (pin 5). With ± 15 volt supplies, the voltage compliance on these outputs is from +15 to -6 volts. For simple applications it is possible to convert these currents to negative output voltages by connecting a resistor in series with the pin(s) to ground (see Figure 3). For a maximum 3mAp-p input signal, the resistor(s) value should be $4.0 \mathrm{k} \Omega$ or less. To obtain an average of the absolute value output, capacitor $\mathrm{C}_{\mathrm{AVG}}$ can be added in parallel with R_{AV}.
More commonly, a positive going voltage at low impedance is desired as an output. This can be accomplished by connecting a finear output pin to the virtual ground of an op amp configured as a current-to-voltage converter (see Figures 1 and 4). The scale factor for the conversion is determined by the value of $R_{I N}$ and the feedback resistor ($\mathrm{R}_{\text {RMS }}$ or R_{AV}).
For the absolute value circuit in Figure 4, a maximum feedback resistor $\left(\mathrm{R}_{\mathrm{AV}}\right)$ of $8 \mathrm{k} \Omega$ allows maximum swing of the SSM -2131 output ampiifier. Given a maximum output signal of $1.5 \mathrm{~mA}_{\text {pEAK }}$ the SSM- 2131 will be able to swing to +12 V . If values larger than $8 \mathrm{k} \Omega$ are used, then signal clipping may result.
For the RMS output circuit in Figure 1, the maximum feedback resistor ($\mathrm{R}_{\text {月MS }}$) can be 10 kS since the RMS level should never exceed 1.2 mA .
A peak output can be implemented by using the circuit in Figure 5. The output scale factor is determined by $R_{\text {OUT }} / R_{\text {IN }}$. The decay time constant is equal to the product $\mathrm{R}_{\mathrm{OUT}} \mathrm{C}_{\text {HOLD }}$. For this circuit, the feedback resistor ($\mathrm{R}_{\mathrm{OUT}}$) should be kept below $5 \mathrm{k} \Omega$. A small capacitor (10 pF) is usually added in parallel with the feedback resistor for stability particularly if a high slew rate JFET
input op amp is used. In Figure 4, this capacitor ($\mathrm{C}_{\mathrm{AVG}}$) can be made large to obtain an average of the absolute value output. If the averaging circuit is implemented then R_{IN} can be increased to a maximum of $10 \mathrm{k} \Omega$ since the 1.5 mA peaks will no longer be present.
If the signal levels being processed are less than 3mAp-p then the above mentioned feedback resistors can be increased accordingly.
The circuits in Figures 1 and 4 can be connected at the same time providing the user with multiple functions from a single SSM-2110. $\mathrm{R}_{\mathrm{IN}}, \mathrm{R}_{\mathrm{RMS}}$ and R_{AV} should be set so that clipping does not occur.
The linear output pins must be kept within their voltage compliance range for proper device operations. An unused linear output must always be terminated, preferably to ground.

LOG OUTPUTS (LOG RMS AND LOG ABS vAL)

The log of the instantaneous absolute value and the \log of true RMS of the input signal appears as voltages on pins 2 and 6 respectively. However, these outputs must be buffered, level shifted and, in many applications, temperature compensated in order to be made useful.
The log recovery transistor is an internal level shifting component which may be switched between the two log outputs. This will reference the log output(s) to the internal voltage regulator which is about 7.5 V above the negative supply (see Figure 6).
Figures 6,7 , and 8 show the recommendediconnection between the log output transistor Q_{2} or Q_{10}, and the log recovery transistor Q_{11}. Note that although the log recovery transistor can be switched between the two log outputs, only one log output can be recovered at a time. With the resistor values $\mathrm{R}_{\text {REF, }}$ and $\mathrm{R}_{\text {REF } 2}$ shown, the output swing at the emitter of Q_{11} over the dynamic

FIGURE 6: Log Recovery Circuit

FIGURE 7: Log of Absolute Value/Average Absolute Value

FIGURE 8: Log of RMS
range of the device will be roughly symmetrical about the internal negative voltage reference. Also, the output impedance will be low enough to drive the log amplifier's input(s) without introducing significant errors. The bias current into the pins of the log amplifier is typically less than $1 \mu \mathrm{~A}$ but can be as high as $2 \mu \mathrm{~A}$. For this reason the current through the log recovery transistor Q_{11} should always be set higher than $5 \mu A$. The current $I_{\text {REF }}$ should not be set too high (above $50 \mu \mathrm{~A}$) because the base current of Q_{10} induces errors in the RMS computing loop. If higher reference currents are required then they should be taken care of by changing the current through Q_{11}. This can be done by changing $R_{\text {REF2 }}$. The Log Recovery Amplifier Section explains this in more detail.
The output sensitivity at EMITTER (pin 8) is about +60 mV for every 10 dB of signal level increase at $25^{\circ} \mathrm{C}$. This sensitivity has a temperature coefficient of $+3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The log of absolute value output can be converted to a log of mean value by connecting a capacitor between LOG $_{\text {ABS VAL }}$ (pin 2) and V - (see Figure 7). Since this is an emitter follower output, the response to a large-signal level increase will be fast while the time constant of the output following a large-signal level decrease will be determined by the product of capacitor $\mathrm{C}_{\mathrm{AVG}}$ and resistor $R_{\text {REF } 1}$.
One might think that connecting a capacitor to the log output would produce the average of the log of the absolute value. However, since the capacitor enforces an AC ground at the emitter of the output transistor, the capacitor charging currents are proportional to the antilog of the signal at the base. Since the base voltage is the log of the absolute value, the log and the antilog terms cancel, and the capacitor is charged as a linear integrator with a current directly proportional to the absolute value of the input current. This effectively inverts the order of the averaging and logging operations. The signal at the output, therefore, is the log of the average of the absolute value of the input signal.

LOG RECOVERY AMPLIFIER (PINS 9,10, 11 AND 12)

The log recovery amplifier is a linearized voltage-to-current transconductor whose gain can be made proportional to absolute temperature. It is used to reference the log output(s) to ground and also to temperature compensate the $V_{T}(K T / q)$ terms in the log output recovery transistors $\left(Q_{2} / Q_{10}\right.$ and $\left.Q_{11}\right)$.
One input of the log recovery amplifier is usually connected to EMITTER (the emitter of the log recovery transistor-pin 8) while the other is connected to $V_{R E F}(p i n 3)$.
Figure 6 shows the internal and external connections used to obtain an output voltage equal to $V_{\text {LOG(RMS) }}$. The transfer characteristic of the log recovery transistors is given by the following equation:
$\Delta V_{I N}=V_{T} \times \ln \left(\frac{\left(V_{I N(R M S)} / R_{I N}\right)^{2}}{I_{R E F 1} \times I_{R E F} 2}\right)$
where, $\quad I_{\text {REF } 1} \approx\left(\frac{8.1 \mathrm{~V}}{\mathrm{R}_{\mathrm{PEF} 1}}\right)$
$I_{\text {REF } 2} \approx\left(\frac{7.5 \mathrm{~V}}{R_{\text {REF }}}\right)+1 \mu \mathrm{~A}$

The transfer characteristic of the log recovery amplifier is given by the following equation:
$I_{\text {OUT }}=\frac{64 m V \Delta V_{I N}}{R_{\text {SCALE }} V_{T}}$
Combining the two equations yields the overall transfer characteristic for the ouput voltage $V_{\text {LOG(RMS) }}$:
$V_{\text {LOG }(R M S)}=\frac{0.148 \times R_{\text {RMS }}}{R_{S C A L E}} \times \log \left(\frac{\left(V_{I N} / R_{I N}\right)^{2}}{I_{\text {REF }} \times I_{\text {REF } 2}}\right)$
where, $\quad I_{R E F 1} \approx\left(\frac{8.1 \mathrm{~V}}{R_{R E F 1}}\right)$
$I_{R E F 2} \approx\left(\frac{7.5 \mathrm{~V}}{R_{R E F}}\right)+1 \mu \mathrm{~A}$
Ideally this voltage is completely independent of temperature. However, due to the temperature coefficient of several transistors internal to the SSM-2110, this is not entirely true. The temperature coefficient is approximately $\pm 75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
With the values shown in Figures 7 and 8, this transfer function corresponds to an output change of $50 \mathrm{mV} / \mathrm{dB}$. The reference current is set to $10 \mu \mathrm{~A}$ to provide the widest possible dynamic range. The following results can be expected for the circuit in Figure 8:

$V_{\text {IN (RMS) }}$	$100 \mu \mathrm{~V}$	1 mV	10 mA	100 mV	1 V	10 V
$\mathrm{I}_{\text {IN (RMS) }}$	10 nA	100 mA	$1 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	1 mA
$V_{\text {LOG OUT }}$	-3 V	-2 V	-1 V	0 V	1 V	2 V

An $\mathrm{R}_{\text {sCaLE }}$ value of approximately $4.7 \mathrm{k} \Omega$ gives the best overall linearity and temperature compensation performance. This is an improvement of about a factor of 40 over the uncompensated drift. A $2 k \Omega$ resistor in series with a silicion diode can be connected from LOG SCALE (pin 12) to the negative supply to defeat the temperature compensation for certain applications such as compressor/limiters where the log drift will cancel the thermal gain drift of a VCA's dB/volt control port.
The maximum output current for both the compensated and uncompensated examples above is $\pm 250 \mu \mathrm{~A}$. This output current is converted to a voltage with the circuits in Figures 7 and 8. For these circuits this corresponds to a maximum output voltage. of $\pm 3.975 \mathrm{~V}$. If $\mathrm{R}_{\text {SCALE }}$ is changed from the nominal value of $4.7 \mathrm{k} \Omega$ the maximum output current will also change by the following equation:
$\mathrm{I}_{\text {LOG OUT (MAX }}=\frac{1.18 \mathrm{~V}}{\mathrm{RSCALE}}$
If the log recovery amplifier is not used, +LOG IN (pin 10) and -LOG IN (pin 11) must be connected to $V_{\text {ref }}(\operatorname{pin} 3)$ for proper operation of the rest of the circuit.
It is possible to use one of the log configurations in Figure 7 or 8 in conjunction with the linear output circuits (Figures 1,3,4 and 5) but care must be taken in choosing the appropriate resistor values. This provides the user with substantial flexibility from a single device.

FIGURE 9: Error Trimming

ERROR TRIMMING

The offset; reference and scale factor trims (Figure 9) can be used to improve the overall accuracy of the device. The correct procedure for trimming out the various errors is as follows. First, + LOG IN (pin 10) and-LOG IN (pin 11) should be connected to $V_{\text {REF }}$ (pin 3). The offset trim should be adjusted to achieve $O V$ at the $V_{\text {LOG(RMS) }}$ output. This nulls out any $D C$ errors due to offsets in the log recovery amplifier. Second, reconnect the \pm LOG IN pins as shown in Figure 9. Apply an input signal of 100 mV RMs $\left(10 \mu A_{\text {Rms }}\right)$. Adjust the reference trim to obtain oV at the $V_{\text {LOG(RMS) }}$ output. This compensates for the input bias current
of the log recovery amplifier and other errors. It sets the reference current to $10 \mu \mathrm{~A}$. Third, change the input signal to $1 V_{\text {RMS }}$ $\left(100 \mu \mathrm{~A}_{\text {RMs }}\right)$. Adjust the scale trim to obtain $1: 000 \mathrm{~V}$ at the $V_{\text {LOG(RMS }}$ output. This adjusts the scale factor to obtain $1 \mathrm{~V} /$ $20 \mathrm{~dB}(50 \mathrm{mV} / \mathrm{dB})$. If other reference currents or scale factors are used then steps 2 and 3 will have to be changed accordingly.
This same procedure can be used for the log absolute value and log average absolute value configurations. If the log recovery amplifier is not used then the circuit in Figure 10 should be used to trim the offsets.

FIGURE 10: Offset Trimming

WAVEFORM	RMS	AVERAGE OF ABSOLUTE VALUE ($A_{\text {AV }}$)	CREST FACTOR $=\frac{V_{p}}{\text { AMS }}$
	$\frac{V_{p}}{\sqrt{2}}$	$\frac{2 \cdot V_{P}}{\pi}$	$\sqrt{2}=1.414$
	V_{p}	V_{p}	1
TRIANGLE WAVE	$\frac{v_{p}}{\sqrt{3}}$	$\frac{V_{P}}{\sqrt{2}}$	$\sqrt{3}=1.732$
	RMS	$\sqrt{\frac{2}{\square}} \times \mathrm{RMS}$	Typically varies from 1 to 6 depending on the characteristic of the noise. Theoretically, the crest factor is unlimited.

FIGURE11: RMS, Average of Absolute Value and Crest Factors for Different Waveforms

TYPICAL APPLICATIONS

AUTOMATIC GAIN CONTROL (AGC) AMPLIFIER

The automatic gain control amplifier shown below features selectable gain reduction compression ratios and time domain adjustable AGC attack and release. The design employs the SSM-2013 VCA, SSM-2110 true RMS-to-DC converter, two SSM-2134 low noise op amps and an OP-215FET input op amp.
For additional information about this circuit, please see PMI application note AN-116.

FEATURES

- Outstanding Frequency Control Range ... 10,000 to 1 Min
- Stable Resonance Over Frequency Sweep
- Minimun External Parts Count
- High Control Rejection ... For 1000 to 1 Sweep 36dB Typ
- On-Chip Resonance Control
- Excellent Dynamic Range 90dB Typ
- Gain Bandwidth... 1MHz Typ
- Wide Supply Voltage Range $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low Cost

APPLICATIONS

- Voltage Controlled Oscillators
- Antl-Allasing and Reconstruction Filtering
- Medical Imaging and Uitra-Sound Systoms
- Instrumentation and Sonar Systems
- Lower Nolse Alternatlve to Switched-Capacitor Filters

GENERAL DESCRIPTION

The SSM-2044 is a low cost 4-pole Voltage-Controlled Filter/ Oscillator which has been designed as a $-24 / \mathrm{dB}$ low-pass filter
with a 10,000 to 1 variable cutoff frequency. The cutoff frequency is determined by a control voltage, making the device ideal for real-time analog filtering under microprocessor control.
A unique feature of the SSM-2044 is its on-chip resonance control, which can produce a low distortion sine wave for use in Voltage-Controlled Oscillator (VCO) applications.
A novel filtering technique provides extended control range, low noise, and high control rejection of 36dB (Typ) for "pop"-free performance.

PIN CONNECTIONS

sic IN+ 1	1010 v_{+}	
a contaol 2	130 sigin \because	
Out 3	${ }^{14} \mathrm{cman}^{\text {a }}$	
$\mathrm{c}_{4} 4$	13 FREQ CONTROL	16-PIN
$\mathrm{C}_{4 \mathrm{a}}$ 5	${ }_{12} C_{18}$	PLASTIC DIP
cas $\sqrt{6}$	$11 c_{21}$	(P.Suffix)
$C_{38} 7$	$10 c_{86}$	
OND ${ }^{\text {a }}$	回v-	

BLOCK DIAGRAM

The SSM-2044's dynamic range of 90dB (Typ) and gain bandwidth of 1 MHz (Typ) make this device a good low noise alternative to switched-capacitor filters in a wide variety of applications, such as anti-aliasing and reconstruction filtering, medical/ultra-sound, instrumentation, and sonar systems.
The SSM-2044's performance and characteristics are guaranteed over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and it is available in 16 -pin epoxy DIP package.

ORDERING INFORMATION

PACKAGE	OPERATING TEMPERATURE
PLASTIC	
16-PIN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
SSM2044P	

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 15 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	SSM-2044			
			MIN	TYP	MAX	UNITS
Positive Supply Range	V+		+5	+15	+18	V
Negative Supply Range	V -		- 5	-15	-18	V
Positive Supply Current	$\mathrm{l}_{\mathrm{gY}}+$	$V_{\text {fc }}=O V(P i n 13$ to GND)	3.0	5.4	8.5	mA
Negative Supply Current	$\mathrm{I}_{\text {ay }}-$	$\mathrm{V}_{\mathrm{fc}}=0 \mathrm{~V}$ (Pin 13 to GND)	4.5	8.0	11.5	mA
Frequency Control Range			10,000:1	50,000:1.	-	
Frequency Control Feedithrough		$\pm \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V},-90 \mathrm{mV} \leq \mathrm{V}_{\mathrm{fc}} \leq+90 \mathrm{mV}$	-	-36	-26	dB
Output Offset	Iollomax	$\pm \mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{tc}}=0 \mathrm{~V}$	-	0.035	0.12	
Normalized Frequency	${ }^{\text {f/ }}$ NOMMNAL	Untrimmed	0.6	1	1.5	
Q Control Input Impedance	$\mathrm{RINOC}^{\text {a }}$	$V_{\text {OC }} \geq 0.7 \mathrm{~V}$	675	900	1200	Ω
Q Current at Oscillation	loos	$-90 \mathrm{mV} \leq \mathrm{V}_{\text {ic }} \leq+90 \mathrm{mV}$	450	500	550	$\mu \mathrm{A}$
Q Control Feedthrough			-	-30	-20	dB
Q Control Threshold Voltage	$V_{\text {OCTHRESHOLD }}$		400	500	-	mV
Maximum Available Control Current	$l_{\text {a Max }}$	$V_{P I N 13}=-120 \mathrm{mV}$	125	01.7	2.2	mA
Frequency Control Input Range	$V_{1 c}$		-120.	\therefore -	$+180$	mV
Maximum Output Signal Current	$I_{\text {OMax }}$		± 300	± 400	± 520	$\mu \mathrm{A}$
Signal-to-Noise	S / N	Reference to 30mV ${ }_{\text {P.p }}\{$ Pin 1 or 15)	-	70	-	dB
Gain Bandwidth			$-$	1	-	MHz

Specifications subject to change; consult latest data sheet.

APPLICATIONS INFORMATION

PRINCIPLE OF OPERATION

The SSM-2044 provides two major control functions controlled by two separate control input pins (pins 2 and 13). The voltage $\left(V_{t c}\right)$ on the frequency control pin (pin 13) determines the cutoff frequency of the filter; the current $\left(I_{0}\right)$ sourced into the Q control (pin 2) determines the amount of the peaking in the filter frequency response by controlling the gain of the feedback amplifier.

Figure 1 shows the normalized amplitude vs. frequency for the SSM-2044 operating at a constant cutoff frequency for different Q or resonance settings. The overdamped curve is the response

FIGURE 1: Normalized Amplitude vs. Frequency Response

FIGURE 2

FIGURE 3
of the filter at minimum Q with a gradual rolloff approaching -24 dB /octave at higher frequencies. As Q increases, the low frequency components are suppressed and the components near the cutoff frequency are emphasized. For all Q settings below oscillation, the final rolloff at high frequencies is -24 dB / octave. At high Q settings, the filter will oscillate with a pure sinewave at the cutoff frequency. Oscillation will occur when the current into the Q control reaches approximately $500 \mu \mathrm{~A}$. (Figures 2 through 5 show the Square Wave resonance response vs. the Q-current.)

FIGURE 4

FIGURE 5

5

When $Q=O V$, the feedback loop will be eliminated and the SSM2044 will have a fourth-order transfer function with only one pole position. This will result in having all four poles on top of each other (see Figure 6).
As Q increases in the positive direction, the four poles of the SSM-2044 will be separated from each other and will travel in the direction shown in Figure 7. This will continue until the poles reach the imaginary axis. As previously stated, the oscillation will occur when the current into the Q control pin (pin 2) reaches approximately $500 \mu \mathrm{~A}$. This corresponds to +7.5 V with the input resistors shown in Figure 11:

This oscillating waveform can be used as a tone source. The V/octave trim and the temperature compensation resistor (see Figure 11) are required in applications where the filter has to produce accurate musical intervals when in oscillation. If this is not necessary, the control op amp feedback network and the temperature compensation resistor can be replaced by $300 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$ resistors respectively.
Figure 8 shows Q or resonance of a four-pole low-pass filter as a function of feedback or Q control current. The function changes very slowly with control current at the low end of the range but increases very rapidly as oscillation is approached. In

FIGURE 6: Fourth-Order Transfer Function $Q=0 V$

FIGURE 7: Transfer Function as $Q \rightarrow$ Increasing
applications where more precise control of the Q is desired, a "reverse-audio" taper pot can be connected to the Q control pin (pin 2) of the SSM-2044 (see Figure 9).
Combining the SSM-2044 with a "reverse-audio" taper pot will change the shape of the curve in Figure 8 to the one shown in Figure 10. By comparing the two graphs, it can be observed that when using the SSM-2044 by itself, the last 10 percent of the pot travel in the Q panel control will result in a 50 percent change in resonance. Using a "reverse-audio" taper pot in conjuction with the SSM-2044 will result in about 20 percent change in resonance for the same last 10 percent of pot travel.

FIGURE 8: Q-Control Transfer Curve

FIGURE 9: "Reverse-Audio" Pot

FIGURE 10: SSM-2044 and "Reverse-Audio" Pot Transfer Curves

In other words, the "reverse-audio" pot will help to reduce the Q panel control sensitivity before reaching oscillation.

TYPICAL CONNECTION

Figure 11 shows the typical connection of the SSM-2044 as a four-pole filter. The differential inputs, will accept any signal(s) up to $\pm 18 \mathrm{~V}_{p-p}$.
The control summer adds the voltages of various control sources such as f_{c} panel controls, transient generators, LFOs, etc. Any number of signals can be summed by applying them through resistors to the summing node of the op amp. The frequency offset adjust is required in polyphonic and programmable systems to make the filter(s) sound the same for identical input control voltages.
The frequency control pin (pin 13) should be terminated to ground through a resistor of $1 \mathrm{k} \Omega$ or less. The combination of this
resistor and the series resistor from pin 13 to a control voltage source form an attenuator that determines the frequency control scale factor which is about $-18 \mathrm{mV} /$ octave at the pin. This attenuator will have a temperature drift of $-3300 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$. To offset this, a thermistor (in lieu of the $1 \mathrm{k} \Omega$ resistor) with opposite drift characteristics should be connected from pin 13 to ground (for a possible thermistor source see Note 1) For best dynamic range, the control summer and the input attenuator should be designed so that the maximum swing at the SSM-2044's control pin corresponds to the extremes of the intended sweep range when the control summer is driven to the supplies. With the values shown in Figure 11, the voltage at the input pin will be $\pm 90 \mathrm{mV}$ which corresponds to a 1000 -to-1 sweep range for $\pm 15 \mathrm{~V}$ supplies.

FIGURE11: Typical Connection

VOLTAGE CONTROLLED AMPLIFIER INTERFACE

Figure 12 shows the SSM-2044 is capable of driving a VCA's input without an intervening op amp. The $1 \mu \mathrm{~F}$ capacitor provides a DC block so that the SSM-2044 offset will not affect the DC balance of the SSM-2024 VCA. With the connection
shown in the Figure 12, an offset adjustment is not required to guarantee a worst case 30 dB VCA control rejection.
The SSM-2024 Quad VCA is an excellent companion to the SSM-2044. The SSM-2024's channel specifications offer excellent performance in control mixers as well as a voicing VCA.

FIGURE 12: VCA Interface

*RCD Components, Manchester, N.H., TEL: (603) 669-0054 TLX: 943512 ALL COMPONENTS 5\% UNLESS NOTED

FIGURE 13: Typical Connection for Breadboarding Purposes

Precision Monolithics Inc.

FEATURES

- 2-Pole and 4-Pole Low Pass Filter Outputs
- On-Chlp Q Control, Mixer/VCA
- Low Offiset
- Low Noise (80dB Below Nominal Slgnal Level)
- Low Control Feedthrough
- ± 15 Volt Operation
- Separate Linear and Exponentlal Cross Fade Mixer Controls

APPLICATIONS

- Music Voicing Systems
- Audio Filtering
- Antlallasing Systems
- Voltage-Controlied Oscillators

ORDERING INFORMATION

PACKAGE	OPERATING TEMPERATURE PLASTIC 18-PIN
SSM2045P	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

The SSM-2045 is a flexible, high performance building block which offers maximum options for active filter design. This
monolithic device includes a voltage-controlled filter with 2-pole and 4-pole low pass outputs and an uncommitted mixer/VCA combination.
The filter section has exceptionally low noise, offset and control feedthrough delivering quality performance even in systems where the filter is not followed by a VCA. A voltage-controlled feedback amplifier gives built-in electronic Q control with a minimum amount of in-band loss at the oscillation point.
The mixer/NCA section can be connected to the filter input for waveform mixing or the outputs for mixing between the 2-pole and 4-pole responses. The two linear and exponential cross fade controls allow this circuit to be used both as a mixer and a VCA. This section has excellent offset, signal-to-noise and control feedthrough specifications. AC coupling between the filter and mixer/VCA is not required.

Continued
PIN CONNECTIONS

18-PIN PLASTIC DIP : (P-Suffix)

BLOCK DIAGRAM

The SSM-2045 has been granted mask work protection under the Semiconductor Chip Protection Act of 1983.

GENERAL DESCRIPTION Continued

Use in aüdio applications provides a "fat" open-loop type sound. Additional features such as a series voltage-controlled high pass filter can be designed using the VCF and onboard VCAs or by using the VCF with the SSM-2024.

ABSOLUTE MAXIMUM RATINGS

$-18 \mathrm{~V}$

Storage Temp Range -65° to $+150^{\circ} \mathrm{C}$
Lead Temp Range (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Operating Temp Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PACKAGE TYPE	$\Theta_{I A}$ (Note 1)	Θ_{Jc}	UNITS	
18-Pin Plastic DIP (P)		70	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE:

1. $\Theta_{j A}$ is specifled for worst case mounting conditions, lie., Θ_{JA} is speclfied for device in socket for P-DIP package.

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER		SSM-2045			
	CONDITIONS	MIN	TYP	Max	UNITS
filter section					
Positive Supply Current		3.0	5.0	9.0	mA
Negative Supply Current	$V_{\text {PIN } 5}=$ GND, $I_{\text {PIN 15-17 }}=0$ (Note 1)	50	6.5	7.1	mA
Output Offset (Pin 1)	$\mathrm{V}_{\text {PIN } 5}=\mathrm{GND}$	-62.5	-	+62.5	mV
Output Offset (Pin 8) -		-62.5	-	+62.5	mV
Change in Output Offset (Pin 1)	$-90 \mathrm{mV}<\mathrm{V}_{\mathrm{PIN} 5}<+90 \mathrm{mV}$	-31.25	-	+31.25	mV
Change in Output Offret (Pin 8)	$\underline{-90 \mathrm{mV}}<\mathrm{V}_{\text {PIN } 5}<+90 \mathrm{mV}$	-31.25	\cdots	+31.25	mV
Signal Input Level (Pin 2)		-	150	300	$m V_{p-p}$
Signal Output (Pln 1,8)		-	1	3	$m V_{p-p}$
Output Source Current (Pin 1,8)		5	10	15	mV
Output Sink Current (Pin 1, 8)		600	750	900	$\mu \mathrm{A}$
Frequency Control Range		1000:1	5000:1	-	
F_{C} Input Bias Current (Pln 5)		-	1.0	2.5	$\mu \mathrm{A}$
F_{C} Scale Factor Drift		-	-3300	-	ppm $/{ }^{\circ} \mathrm{C}$
F_{c} Control Sensitivity (Pin 5)		-20	-19.3	-18.7	mV/OCTAVE
Q Current Required for Oscillation (Pin 17)		120	150	185	$\mu \mathrm{A}$
Dynamic Range	$\mathrm{V}_{\text {PIN } 5}=-90 \mathrm{mV}$ (Filter Wide Open)	-	92	-	$d \mathrm{~B}$
In Band Distortion (THD) ($4 \mathrm{~F}_{1 \mathrm{~N}} \leq \mathrm{F}_{\mathrm{C}}$)	At 150Vp-p in	-	0.1	-	\%
Max Distortion (THD) ($\mathrm{F}_{1 \mathrm{~N}}=\mathrm{F}_{\mathrm{C}}$)	At 150Vpp IN	-	1.0	-	\%
MIXER/VCA SECTION					
Output Offset Current	$\begin{gathered} V_{\text {PIN 11 }}=V_{\text {PIN 12 }}=V_{\text {PIN 14 }}=G N D \\ \mathrm{I}_{\text {PIN 15 }}=500 \mu A, \mathrm{I}_{\text {PIN 16 }}=0 \\ \text { or } \\ \mathrm{I}_{\text {PIN 16 }}=500 \mu \mathrm{~A}, \mathrm{I}_{\text {PIN 15 }}=0 \end{gathered}$	-12.5	\square	+12.5	$\therefore \quad \mu \mathrm{A}$
Output Leakage	$\mathrm{I}_{\text {PIN 15 }}=\mathrm{I}_{\text {PIN 16 }}=0$	-1	-	+1	nA
VCA Gain	$\begin{aligned} & I_{\text {PIN 15 }}=I_{\text {PIN 16 }}=500 \mu \mathrm{~A} \\ & I_{\text {PIN 14 }}=G \mathrm{GND} \end{aligned}$	3842	4085	4330	$\mu \mathrm{mhos}$
VCA Gain Matching		-0.5	-	+0.5	$d \mathrm{~B}$
Mix Expo Input Bias Current (Pin 14)	$\mathrm{I}_{\text {PIN } 15}=500 \mu \mathrm{~A}, \mathrm{I}_{\text {PIN 14 }}=$ GND	-50	-	-5	$\mu \mathrm{A}$
Control Rejection (Untrimmed)	RE $40 \mathrm{mV} \mathrm{V}_{\text {p-p }}$ (Pin 11 or 12)	-	41.5	30	dB
Signal-to-Noise Ratio	RE $40 \mathrm{mV} \mathrm{V}_{\text {P-p }}$ (Pin 11 or 12)	-	82	-	dB
Distortion	$40 \mathrm{mV} \mathrm{p}-\mathrm{p}$ (Pin 11 or 12)	:"	0.3	-	\%

NOTE:

1. Resistor in series with pin 10 required for negative voitage supply voltage $\leq-6,8 \mathrm{~V}$.

Q CONTROL CHARACTERISTICS

FUNCTIONAL DIAGRAM

FIGURE 1: SSM-2045 Typical Connection

TYPICAL CONNECTION

Figure 1 shows a typical connection of the SSM-2045. The inputs of the Mixer/VCA are connected to the 2-and 4-pole outputs of the filter section. This allows the relative amount of the two low pass responses to be placed under program control via the expo mix control. The envelope is applied to the two linear mix controls. This determines the overall volume at the final output.

FILTER SECTION

The signal input has an input impedance of 900Ω and accepts a nominal input signal of 150 mV -p. Higher signal levels can be used if the increased distortion is compatible with the desired sound. Signals can be summed at the input using a resistor network, the on-chip mixer/NCA or a multiple VCA IC such as the SSM-2024.

The frequency control input (pin 5) can vary the cutoff frequency over a 5000:1 range. Usually the sweep is restricted to 1000:1 which corresponds to $\pm 90 \mathrm{mV}$ at the pin. With the input attenuator shown in Figure 1, the F_{G} control sensitivity is about -1 octave per volt. For best control rejection, a time constant of approximately $500 \mu \mathrm{~s}$ should be established to limit rapid voltage changes either at the input pin or in the preceding control summer.

The frequency control pin (pin 5) should be terminated to ground through a resistor of $\leq 1 \mathrm{k} \Omega$. A series resistor from pin 5 to a control voltage source and the ground connected resistor form an input attenuator that determines the frequency control scale factor which is approximately $-18 \mathrm{mV} /$ octave at the pin. This has a temperature drift of $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. A tempsistor with similar drift to the ground connected ground resistor can minimize drift effect (see note).

The output can source more than the 10 mA and sink approximately $750 \mu \mathrm{~A}$. Resistors can be connected from the outputs to the negative supply to increase sink current capability. The 2 pole output is inverted with respect to the 4-pole output.

The signal-to-noise ratio of the filter section is 84 dB for 150 m V_{p-p} at the signal input pin which allows for more than 6 dB of headroom. The worst case control feedthrough referred to this signal level is $-32 \mathrm{~dB}, 12 \mathrm{~dB}$ better than conventional designs.

MIXER/VCA SECTION

This section is completely independent of the filter circuit allowing it to meet a variety of system requirements. First, it can be used as both a VCA and as a cross fade control between the 2pole and 4-pole filter outputs. It can also be used in a similar manner as a volume contour VCA and to mix tone sources to the filter input. With most filters, placing the volume VCA before the filter would be unacceptable as the VCA as a follower is used to mask the filter background noise and control feedthrough. However, the filter specifications of the SSM-2045 will allow this configuration. For designs with more than two sources, a third oscillator or noise generator for example, the additional signals can be mixed or switched to the filter input using simple resistor summing, CMOS transmission gates or the SSM-2024.
The impedance from the signal inputs of the VCAs to ground should be approximately 910Ω for the best offset and control rejection performance. The overall performance of the VCAs with respect to signal-to-noise ratio, control rejection and distortion vs. input signal level is identical to the SSM-2024.

Note: RCD Components, Manchester, N.H. USA, Telephone: (603) 669-0054 TLX: 943512

MIXER/VCA PERFORMANCE

FIGURE 3

A series voltage-controlled high pass filter can also be made with this section (Figure 2a). Figure 2b shows a similar circuit using one section of the SSM-2024. The input signal level of these two circuits must be no more than $500 \mathrm{~m} V_{p-p}$ unless padded as shown. The output level can be set by scaling $R_{3}-R_{5}$.
The controls of the Mixer/NCA section offer maximum flexibility as several control configurations and response characteristics are possible. Figure 3 shows both the VCA inputs connected for linear control. A VCA will be completely off when corresponding input control voltage is within 500 mV of ground. The series resistor to linear control input should be chosen to give $\leq 250 \mu \mathrm{~A}$ at the maximum control voltage.
a)

b)

FIGURE 2

b)

FIGURE 4

Figure 4a shows a circuit that can be added in series with a linear control input to give an audio taper control response. The network around the transistor is desired so the the impedance seen by the control voltage decreases by a factor of ten when the control voltage exceeds half its maximum value. At this point, the transistor turns on and almost all additional control passes through the transistor. Figure 4b shows the approximate control characteristic of the circuit.
The control for the combined linear and exponential cross-fade control is given in Figure 5a. This circuit splits a common linear control current between two VCAs according to the transfer characteristics of a differential input pair. An envelope generator can be applied to the common generator linear input to control overall volume contour while the relative amount of the two signals, of the VCAs in the mix is determined by the voltage on pin 14. The characteristic of this control is shown in Figure 5b.

If cross-fade control is desired, a resistor can be connected to the common linear control from the positive supply to give a current of $500 \mu \mathrm{~A}$ or less

POWER SUPPLIES

The SSM-2045 is designed to give best overall performance when operated from ± 15 volt supplies. Supply voltages down to $\pm 5 \mathrm{~V}$ can be accommodated with increasing degradation of some specifications, notably VCA offset and control feedthrough. The negative supply can be any value below -5 V with no change in performance. A -5 V supply can be connected
a)

b)

FIGURE 5
directly to pin 10. For a negative supply voltage below -6.8 V , a series resistor is used with a value determined by the following equation:
$R_{\text {LIMIT }}=\left(V_{\theta \theta}-6.8\right) / 7.1 \mathrm{~mA}$ for $V_{\theta \theta}<-6.8 \mathrm{~V}$

CALCULATING THE SSM-2045 FILTER RESPONSE CHARACTERISTIC

Example: Butterworth Rolloff Characteristic
Each 2-pole section in the SSM-2045 obeys the generalized 2pole low pass transfer function:
$\frac{V_{\text {OUT }}}{V_{\mathbb{N}}}=H(s)=\frac{H_{\varnothing} \omega_{\varnothing}^{2}}{s^{2}+\alpha \omega_{\varnothing} s+\omega_{\varnothing}^{2}}$
where $\omega_{\varnothing} 2 \pi=f_{\text {CUTOFF }}$ and $\alpha \equiv \frac{1}{Q}$
Deriving for the SSM-2045 gives the following:
$\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{-g_{m}^{2} /\left(C_{1} 10 C_{2}\right)}{S^{2}+s \cdot g_{m} / C_{1}+g_{m}^{2} /\left(C_{1} 10 C_{2}\right)}$
Comparing the generalized equation with the equation for the SSM-2045 we have:
$H_{\varnothing}=-1, \omega_{\varnothing}=\frac{g_{m}}{\sqrt{C_{1} 10 C_{2}}}$ and $\alpha \equiv \frac{1}{Q}=\frac{\sqrt{C_{1} 10 C_{2}}}{C_{1}}$

These last two equations allow calculation of the capacitor values for a desired transfer characteristic. Note that C_{2} behaves as if it were 10 times its actual value. This is due to the gain of 10 in the second and fourth filter stages.

DESIGN EXAMPLE

The principle application of the SSM-2045 is a low pass filter with 2- and 4-pole outputs. If a Butterworth (maximally flat) rolloff characteristic with no feedback $\left(l_{Q}=0\right)$ is desired as the final 4pole output, filter design tables would show:
$\omega_{\phi 1}=\omega_{\phi 2}, \alpha 1=1.85$ and $\alpha_{2}=0.765$
So the first 2 -pole section would be overdampened and the second would be underdampened. Choosing $C_{1}=0.01 \mu \mathrm{~F}$ we find:
$C_{1}=0.01 \mu \mathrm{~F}, \mathrm{C}_{2}=3300 \mathrm{pF}, \mathrm{C}_{3} \approx 0.024 \mu \mathrm{~F}, \mathrm{C}_{4} \approx 1500 \mathrm{pF}$
This does produce a system with the correct response, however, performance under feedback is poor because of the high feedback gain required for oscillation. If. $\omega_{\phi 1}$ is increased by approximately an octave and we recalculate:
$C_{1}=0.01 \mu F_{1} C_{2} \approx 3300 \mathrm{pF}, C_{3} \approx 0.01 \mu \mathrm{~F}, \mathrm{C}_{4} \approx 680 \mathrm{pF}$
This yields a system with excellent sonic quality. The onset of oscillation with increasing feedback is smooth and well con-
trolled. Also, the oscillation amplitude with a given feedback is nearly constant over the audio band as the frequency is swept.

TYPICAL APPLICATION

Figure 6 shows an application using two SSM-2045 Mixer/VCA sections which in addition to providing the basic dual VCA function, also positions the two sound sources in the left-right stereo image field under voltage control. Signal 1 and Signal 2 amplitude are the overall linear VCA gain control ports while the Signal 1 and Signal 2 Pan inputs control the relative amount of signals appearing in the two output channels. Note that each sound source can be both separately enveloped and positioned. Each half section works as described for the linear-exponential crossfade circuit shown in Figures 5a and 5b.

The Signal 1 and Signal 2 inputs can be connected to the outputs of the SSM-2045 filter sections in the two ICs. This scheme can easily be extended to any polyphonic music system having any multiple of two voices. In such a system, all the left and all the right current outputs can be connected together to the virtual ground inputs of the two op amp current-to-voltage converters. Note that since the left and right VCA inputs are inverted for each signal, one of the final outputs, either left or right, should be inverted to avoid phase cancellation.

FIGURE 6: Dual VCA/Stereo Panning Circuit

Precision Monolithics Inc.

FEATURES

- 4 Pole Low-Pass Fliter and On-Board Parallel Output VCAs
- 92dB VCF Dynamic Range
- Low Distortion VCF and VCAs
- Low Control Feedthrough
- Full Class A Signal Path
- dB/Volt Master Galn and Pan Controls

APPLICATIONS

- Digltal Audlo Systems
- Antlallasing and Reconstruction Filters
- Filight Simulators
- Sound Effects

ORDERING INFORMATION

PACKAGE	OPERATING TEMPERATURE PLASTIC RASGIN
$\operatorname{SSM2047P}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PIN CONNECTIONS

GENERAL DESCRIPTION

The SSM-2047 is a dedicated signal processing array designed to conform to the demands of state-of-the-artsystems. Provided on-chip is a four pole low-pass voltage-controlled filter and three output VCAs which feature individual channel as well as mixable left and right independent outputs.
The filter section has been designed for low distortion, wide dynamic range and low offiset. A voltage-controlled feedback amplifier gives built-in electronic Q (resonance) control with a minimum of in-band loss at the oscillation point.
The output VCAs are low control feedthrough, full Class A devices connected in parallel rather than in series for less noise and distortion build up.
The master gain and stereo pan pins have exponential (dB/volt) control characteristics. Unit-to-unit frequency and amplitude variability is reduced by external reference resistors.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage .. +18 V
Negative Supply Voltage .. -18V
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$ Operating Temperature Range $0^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}$

PACKAGE TYPE	Θ_{JA} (Note 1)	$\boldsymbol{\theta}_{\mathrm{JC}}$	UNITS
18-Pin Plastic DIP (P)	70	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE:

1. $\Theta_{\mathrm{j} A}$ is specified for worst case mounting conditlons, i.e., $\boldsymbol{\theta}_{\mathrm{iA}}$ is specified for device in socket for P-DIP package.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	$\begin{gathered} \text { SSM-2047 } \\ \text { TYP } \end{gathered}$	MAX	UNITS
Positive Supply Current	$V_{\text {PIN } 9}=V_{\text {PIN 12 }}=$ GND	8.5	10.2	11.5	mA
Negative Supply Cürent	$\mathrm{V}_{\text {PIN } 9}=\mathrm{V}_{\text {PiN i2 }}=$ GND	6.5	8.15	9.8	mA
$\begin{aligned} & \text { Fiter Section @ } I_{\text {F }} \text { REF }=10 \mu \mathrm{~A} \\ & \text { Signal Input Level }\left(P_{\text {in }} 8\right) \end{aligned}$		-	1.35	2.7	v_{p-p}
- Input Impedance (Pin.8)	\cdots	6.56	7.2	9.84	k Ω
Output Offset (Pin 15)		-	+5	+15	mV
Frequency Control Feedthrough (Pin 15)	$\begin{aligned} & -90 \mathrm{mV} \leq V_{\text {PIN }} \leq=90 \mathrm{mV} \\ & \text { (Note 2) } \end{aligned}$	-	-36	-28	dB
Frequency Control Range (Pin 9)		-	12	14	Octaves
Center Frequency Variability	$\mathrm{V}_{\text {PIN } 9}=\mathrm{GND}$	0.92	1.00	1.08	F/F nom
$\begin{aligned} & \mathrm{F}_{\mathrm{C}} \text { Input Bias } \\ & \text { Current (Pin } 9 \text {) } \end{aligned}$	$\mathrm{V}_{\text {PiN } 9}=\mathrm{GND}$	-	1.25	2.5	$\mu \mathrm{A}$
Frequency Control Sensitivity (Pin 9)		-20	-19.3	-18.7	mV/Octave
F_{C} Scale Factor Drift		-	-3300	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
QCurrent Required for Osclllation (Pin 2)		40	75	100	$\mu \mathrm{A}$
QControl Feedthrough (Pin 15)	$\begin{aligned} & 0 \leq 1_{0} \leq 60 \mu A \\ & (N o t e 2) \\ & \hline \end{aligned}$	-	-26	-16	dB
Dynamic Range (Clipping to Noise Floor)	$V_{\text {PIN } 2}=-90 \mathrm{mV}$	-	92	-	dB
In-Band Distortion $4 \mathrm{~F}_{1 N}<\mathrm{F}_{\mathrm{C}}$		-	0.1	-	\%
Max Distortion $\mathrm{F}_{\text {IN }}=\mathrm{F}_{C}$		-	1.0	-	\%
$\begin{aligned} & \text { Output VCAs @ } I_{G R E F}=300 \mu A \\ & \text { Max VCA Gain (Pins 13.14 and 16) } \end{aligned}$	$\begin{aligned} & V_{\text {PIN } 12}=0 \mathrm{~V} \\ & V_{\text {PIN } 1}=+300 \mathrm{mV} \text { or }-300 \mathrm{mV} \end{aligned}$	2250	2450	2650	$\mu \mathrm{mhos}$.
Output Leakage (Pins 13, 14 and 16)	$\mathrm{V}_{\text {PIN } 12}=+400 \mathrm{mV}$	-1	-	+1	nA
Left-Right Gain Matching (Pins 14, 16)	$V_{\text {PIN } 1}=V_{\text {PIN } 12}=\mathrm{GND}$	-0.5	-	+0.5	dB
Gain Control Input Bias Current (Pin 12)	$V_{\text {PIN } 12}=0 \mathrm{~V}$	-	1.0	-	μA
Pan Control Input Blas Current (Pin 1)	$\mathrm{V}_{\mathrm{PIN} 1}=0 \mathrm{~V}$	-	0.5	-	$\mu \mathrm{A}$
Control Feedthrough	(Note 2)	-	-41.5	-30	dB
Signal-to-Noise	(Note 2)	-	82	-	dB
Distortion	(Note 2)	-	0.3	-	\%

NOTES:

1. Resistor in series with pin 10 required for $V-<-6.8 V$. Due to internal zener diode between pin 10 and ground, negative supply voltages between -6 V and -9V should be avoided.
2. These specifications are referred to a $1.8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ signal into pin 8.

Specifications subject to change; consult latest data sheet.

FUNCTIONAL DIAGRAM

FILTER SECTION

The filter section of the SSM-2047 is similar in design and performance to that of the SSM-2045. The primary difference is a reduced output voltage swing since it is not brought out directly. This dictates different C_{2} and C_{4} than those used with the SSM2045 (see Typical Connection Diagram).

The SSM-2047 has a $7.2 \mathrm{k} \Omega$ input attenuator resistor internal to the device. The input (pin 8) referred clip point is approximately 2.7V $\mathrm{V}_{\mathrm{p}-\mathrm{p}}$. The maximum input signal should be kept a few dB below this value. The frequency control (pin 9) should be terminated to ground through a resistor of $1 \mathrm{k} \Omega$ or less. A series resistor from pin 9 to a control voltage source and the ground connected resistor form an input attenuator that determines the overali frequency control scale factor. The scale factor is approximately $-19.3 \mathrm{mV} /$ octave at pin 9 . This will have a temperature drift of $-3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ unless a tempsistor with opposite drift is used as the ground connected resistor (see note below).
The Q control has been designed to give only a 6 dB in-band signal loss at the oscillation point. This slight loss will keep headroom nearly constant as Q is increased. The Q control input (pin 2) is the emitter of a grounded base PNP transistor through a 400Ω short-circuit protection resistor. The onset of $\sin e$ wave oscillation will occur with about $75 \mu \mathrm{~A}$ sourced into pin 2. An external series resistor is usually connected from pin 2 to the \mathbf{Q} control voltage source.

OUTPUT VCAs

Three output VCAs are provided: channel and left-right stereo. These are connected in parallel rather than series for less noise and distortion build up. The inputs of the VCAs are internally connected to the filter output. Pin 15 has been provided for a capacitor which effectively acts as a DC block between the filter and the VCAs. This prevents any filter offset voltage from degrading the control rejection performance of the VCAs. The gain control (pin 12) controls the gain of all three VCAs. The control sensitivity is about $-10 \mathrm{~dB} / 30 \mathrm{mV}$ at pin 12 . A control attenuator is usually connected between pin 12 and the gain control source.
The pan control (pin 1) determines the relative amount of signal that will appear in the left-right stereo outputs. The sum of the signals in the two outputs is constant. The control sensitivity rapidly approaches $-10 \mathrm{~dB} / 30 \mathrm{mV}$ away from center in the output being attenuated. Again, an external control attenuator is usually provided from the pan control voltage source to the pan pin. It may be desirable to remove the signal from the stereo mix when the channel output is in use. This can be accomplished with a switch on the channel jack connecting the positive supply to a resistor which goes to the control attenuator at the pan pin. The resistor's value should be chosen to give about +1.5 V at pin 1 when it is connected to the supply.
The VCAs all have current outputs. This allows signal summing by simply connecting the appropriate outputs of multiple SSM2047 s to a single op amp current-to-voltage converter. The voltage compliance of the outputs is $\pm 330 \mathrm{mV}$. However, the output(s) can also be connected to a small resistor to ground.

GENERALINFORMATION

The SSM-2047 will operate with positive supply voltage in the range from +9 to +18 volts. Due to the internal zener diode connected between ground and pin 10, a resistor in series with pin 10 to the negative supply must be included for negative supplies below -6.8 volts. The resistor's value is determined by: the equation:

$$
R_{S}=\left|6.8+V_{E E}\right| / 9.8 \mathrm{~mA} \text { for } V_{E E}<-6.8 V
$$

A-5 volt supply can be connected directly in pin 10. Negative supply voltages less than -6 volts or greater than -9 volts are recommended.
The SSM-2047 requires two external resistors to establish the filter center frequency and the maximum gain of the output VCAs. The voltage at pin 11, the filter reference current pin, is 2.5 volts above ground. The resistor between this pin and the negative supply or pin 10 should establish a $10 \mu \mathrm{~A}$ current source. Pin 17's voltage is a few hundred millivolts below ground. The resistor between this pin and the negative supply or pin 10 will produce a current that determines the maximum gain of the ouput VCAs. This current should be no more than $300 \mu \mathrm{~A}$ for optimum performance. If the negative supply is lower than: the voltage on pin 10, connecting the resistors to V - will establish currents with greater accuracy. However, the supply should be well regulated and free of noise. If this is not the case, the resistors and the bypass capacitor should be connected to pin 10.

BLOCK DIAGRAM: 8-Channel System Using 8-Bit CMOS DAC, 8-Channel Demultiplexers, VCFs/VCAs.

TYPICAL CONNECTION OF THE SSM-2047

The figure below shows a typical connection of the SSM-2047 powered from $\pm 15 \mathrm{~V}$ supplies. The $43 \mathrm{k} \Omega$ and $1.5 \mathrm{M} \Omega$ resistors establish the $300 \mu \mathrm{~A}$ and $10 \mu \mathrm{~A}$ current references for VCA gain
and filter center frequency respectively. Note that the negative supply should be well regulated and free of noise or the resistor values should be scaled and the connections moved to pin 10 with the bypass capacitor.

SSM-2407 TYPICAL CONNECTION

FEATURES

- Performs Log, Antilog, and Log Ratio Functions
- 50pA Input Bias Current (Trimmed)
- 4 mV Input Offset Voltage
- On-Board Reference
- Temperature Stabilized
- 25ppm/ ${ }^{\circ}$ C Reference Drift
- 30ppm/ ${ }^{\circ} \mathrm{C}$ Scale Factor Drift
- 0.25\% Conformance
- 3-Decade Dynamic Range (Voltage Mode)
- 6-Decade Dynamic Range (Current Mode)
- Low Cost

APPLICATIONS

- Photodiode Preamplifier
- Absorption Measurement
- Low Sweep Generators
- High Resolution Data Acquisition
- Analog Computation Circuits
- Analog Compression/Expansion
- Linear-to-dB Conversion

ORDERING INFORMATION

PACKAGE	OPERATING TEMPERATURE PLASTIC 16-PIN
SSM2NGE	

PIN CONNECTIONS

16-PIN PLASTIC DIP (P-Suffix)

GENERAL DESCRIPTION

The SSM-2100 is a monolithic low-cost DC logarithmic amplifier capable of implementing log/antilog as well as log ratio transfer functions. This device offers a dynamic range of 6 decades of current and 3 decades of voltage. The circuit contains two precision operational amplifiers, a high conformance transistor pair and a precision bandgap voltage reference. An on-board substate temperature regulator stabilizes both the scale factor and reference drift. A negative voltage reference is also available to facilitate external trimming.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Supply Voltage .. 36 V or $\pm 18 \mathrm{~V}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Operating Temperature Range $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Current into Any Pin 10 mA
Lead Temperature Range (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$

PACKAGE TYPE	$\Theta_{\mathrm{JA}}($ Note 1)	Θ_{JC}	UNITS
16-Pln Plastic DIP (P)	82	39	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE:

1. Θ_{JA} is specifled for worst case mounting conditions, i.e., Θ_{JA} is specified for device in socket for P-DIP package.

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\text {LIMIT }}=1.6 \mathrm{k} \Omega_{1}+5^{\circ} \mathrm{C} \leq T_{A} \leq+50^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA}$, unless otherwise noted.

NOTES:

Specifications subject to change; consult latest data sheet.

1. Guaranteed by design but not directly measured.
2. Applies to both signal and reference inpuls.
3. Fieferred to output in log mode, or to input in antilog mode.
4. Specifications apply after a 50 second warmup period.

GENERAL PRINCIPLE OF OPERATION

The SSM-2100 utilizes the predictable logarithmic relationship between the collector currents and differential input voltage of an NPN transistor pair, given by:
delta $V_{I N}=k T / q$ In $\mathrm{IC}^{2} \mathrm{~A}_{\mathrm{C} 1}$
where: $k=$ Boltzmann's constant $\left(1.38 \times 10^{-23}\right) \mathrm{J} /{ }^{\circ} \mathrm{K}$)
$q=$ charge of an electron ($1.6 \times 10^{-23} \mathrm{C}$)
$\mathrm{T}=$ absolute temperature (${ }^{\circ} \mathrm{K}$)
Deviation in the absolute temperature term is eliminated with the SSM-2100 design since the chip temperature is regulated at $+60^{\circ} \mathrm{C}\left(333^{\circ} \mathrm{K}\right)$.

PRINCIPLE OF LOG OPERATION

The logging function is realized by placing the antilog element (transistor pair) in the feedback loop of the output converter amplifier $\left(A_{1}\right)$ as shown in the block diagram. As shown in Figure 1, the loop is closed and the conversion is scaled with feedback resistors R_{1} and R_{2} from pin 16 to pin 14. The high-gain op amps (A_{1} and A_{2}) have negligible input bias current. These force the collector currents of the high conformance transistor pair to be equal to the input current (pin 12) and the reference current (pin 6).
Referring to equation (1), the input current becomes I_{C}, and the reference current $I_{C 2}$, while delta $V_{I N}$ is $V_{\text {BASE }} Q_{2}$ or V_{18}, since the base of Q_{1}, is ground. Here, the output amplifier A forces the base of Q_{2} to be at the appropriate voltage governed by equation (1) and the collector currents of Q_{1} and Q_{2}. With the reference current set at 1 mA , the input current operates at less than or equal to 1 mA . In the case of the inverting log amp, as the input current decreases, the $V_{B E}$ of Q_{1} decreases which increases V_{16} or $V_{\text {OUT }}$ since the $V_{B E}$ of Q_{2} is fixed.

FIGURE 1: Basic Principle of Operation

NOTE: The output amplifier can only swing to approximately 1.5 V below ground and sinks about $300 \mu \mathrm{~A}$. For this reason, they are used only with positive output voltages. For bipolar amplifier output, see Figure 7 in the Log Ratio section.
Equation (1) can be rewritten:
$V_{16}=\mathrm{kT} / \mathrm{q} \ln \left(\mathrm{I}_{\mathrm{REF}} / \mathrm{I}_{\mathrm{N}}\right)$
converting to base 10:
$V_{16}=2.303 \mathrm{kT} / \mathrm{q} \operatorname{LOG}_{10}\left(I_{\text {REF }} \prime_{\text {IN }}\right)$
Figure 1 shows the feedback which produces the output scale factor:
$V_{\text {out }}=V_{18}\left(R_{2}\left(R_{1}+R_{2}\right)\right)$
Substituting into equation 3 yields:
$V_{\text {OUT }}=2.303 \mathrm{kT} / \mathrm{q}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / \mathrm{R}_{1} \mathrm{LOG}_{10}\left(I_{\text {REF }} / I_{\text {IN }}\right)$
Letting $K=2.303 \mathrm{kT} / \mathrm{q}\left(R_{1}+R_{2}\right) / R_{2}$
or $K=0.066\left(R_{1}+R_{2}\right) / R_{2}$ (usually set to $1 \mathrm{~V} /$ decade with $R_{2}=$ 470 ()
For current-mode operation:
$V_{\text {OUT }}=K \operatorname{LOG}_{10}\left(I_{\text {REF }}{ }^{\prime} \|_{\mathbb{N}}\right)$
For voltage-mode operation:
$V_{\text {OUT }}=K \operatorname{LOG}_{10}\left(V_{\text {REF }} / V_{I N} \times R_{I N} / R_{\text {REF }}\right)$
Since both op amp inputs rest at virtual ground, the reference and input currents can easily be generated by applied voltages through external resistors without generating excessive errors.
For the best results, the input and reference currents should be kept below 1 mA .
A 5 V reference has been included on chip for applications requiring a true log function (rather than a log ratio function).

INPUTS

As with all log amplifiers, the SSM-2100 has a limited dynamic range of 3 decades for voltage inputs. This is partially due to input offset voltage (trimmable) and various second order effects.
For the widest dynamic range, current-mode operation is recommended. The device can handle 5 decades of current input untrimmed and at least 6 decades when trimmed. Similarly, when operating in the log ratio mode, the device can handle 10 decades and 12 decades, respectively.
In order to ensure unconditional stability when operating with true current inputs, it is important to shunt the signal input to ground with a $10 \mathrm{k} \Omega$ resistor and a 10 nF capacitor in series.

NEGATIVE POWER SUPPLY CONSIDERATIONS

Because the negative power suppply is regulated at -7 V , it is necessary to add a current limiting resistor ($\mathrm{R}_{\text {LMiIT }}$) in series with pin 7. When using -1.5 V for V-, a value of $1.6 \mathrm{k} \Omega$ is recommended for $\mathrm{R}_{\text {LIMIT }}$. This will keep the voltage at pin 7 very stable and useful for external trimming. Note that the negative power supply is internaily regulated and needs no decoupling.

POSITIVE POWER SUPPLY CONSIDERATIONS

Because of the high gain of the temperature regulator circuit, generous positive supply decoupling should be used. The $0.2 \mu \mathrm{~F}$ decoupling capacitor shown on the application circuits should be of ceramic type and mounted as close to pins 1 and 4 as possible. It should also be noted than pin 1 carries all the heater current and care should be taken when laying out ground lines to prevent this from causing errors.

TEMPERATURE CONTROL

The internal chip temperature is regulated at about $60^{\circ} \mathrm{C}$ if the temperature adjustment (pin 12) is not used. This on-board substrate temperature regulator stabilizes the scale factor and reduces drift of the reference.
The regulated chip temperature can be increased or decreased by the use of pin 2 . To decrease the temperature by $n^{\circ} \mathrm{C}$, connect a resistor of the value $3.5 \mathrm{n} \mathrm{M} \Omega$ between pin 2 and 10 . To increase the temperature by $n^{\circ} \mathrm{C}$, connect a resistor of the value $6 / \mathrm{n} M \Omega$ between pins 2 and 7 .
in some applications such as those requiring low power, the temperature regulator can be disabled entirely. This is accomplished by connecting a $100 \mathrm{k} \Omega$ resistor between pins 2 and 4 $\left(\mathrm{V}+\right.$). In this case, the reference drift is about $70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The scale factor drift can be compensated by using a temperature compensating resistor* for R_{2}.

APPLICATIONS

The SSM-2100 can be connected for voltage or current logging functions. Figures $2 a$ and $2 b$ show the transfer characteristics of the inverting log amplifier for current and voltage mode operation.

FIGURE 2a: Inverting Log Amp with Current Input

FIGURE 2b: Inverting Log Amp with Voltage Input

INVERTING LOG AMPLIFIER

Figure 3 shows the SSM-2100 configured in the inverting log mode. Setting $I_{I N}=I_{R E F}$ with $V_{I N}=10 \mathrm{~V}$, the output will be zero and increase by $1 \mathrm{~V} /$ decade as $I_{I N}$ is decreased. Whereas $V_{I N}$ can be varied proportionally by varying $R_{I_{N}}$ a 10 V input optimizes the dynamic range with $\pm 15 \mathrm{~V}$ supplies.

To vary the scale factor, it is best to change R_{1}. To alter the output offset at a given input voltage, adjust $R_{\text {REF }}$. Phase compensation for the circuit is provided by C_{1}, C_{2} and C_{3}. This scheme yieids 30 kHz small-signal bandwidth at 1 mA input current, 8 kHz at $1 \mu \mathrm{~A}$ and approximately 1.6 kHz at 100 nA .

FIGURE 3: Inverting Logarithmic Amplifier

NONINVERTING LOG AMPLIFIER

Interchanging the signal and reference inputs yields a noninverting log amplifier as shown in Figure 4. In this configuration, the output crosses zero when the input is five decades below the full-scale value. This can be adjusted by varying R_{3}.
R_{1} and R_{2} can cause a slight inaccuracy because they add to the base resistance of Q_{1} and Q_{2} : This can be minimized by keeping R_{1} and R_{2} as small as possible. It is recommended that $R_{2}=470 \Omega$.
The small-signal bandwidth of this circuit is $5 \mathbf{k H z}$ with inputs currents from $1 \mu A$ to 1 mA . Over the full 5 -decade input current range, the bandwidth is better than 2 kHz .

FIGURE 4: Noninverting Logarithmic Amplifier

ANTILOG AMPLIFIER

Figure 5 shows the configuration for the antilog amplifier. The input range for this circuit is zero to 10 V which can be adjusted by R_{1}. The output scale factor is $1 \mathrm{~V} /$ decade which can varied by adjusting $R_{\text {out }}$.
The transfer function is also derived from equation (1). In the antilog configuration, the current $I_{C_{1}}$ becomes $I_{\text {OUT }}$ and $V_{B A S E}$ Q_{2} or V_{16} is $V_{1 N}\left(R_{2} /\left(R_{1}+R_{2}\right)\right)$. Equation (2) now becomes:
$V_{I N}\left(R_{2} /\left(R_{1}+R_{2}\right)\right)=k T / q \ln \left(t_{R E F} / I_{O U T}\right)$
or
$I_{\text {REF }} / I_{O U T}=\exp \left[R_{2} /\left(R_{1}+R_{2}\right) q / k T V_{I N}\right]$
or
$I_{\text {REF }} R_{\text {OUT }}=V_{\text {OUT }} \exp \left[R_{2} /\left(R_{1}+R_{2}\right) q / k T V_{\text {IN }}\right]$

Converting to base 10 and letting $\mathrm{K}=2.303 \mathrm{kT} / \mathrm{q}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / \mathrm{R}_{2}$ or $0.066\left(R_{1}+R_{2}\right) / R_{2}$ (assuming $T=+60^{\circ} \mathrm{C}$ or $333^{\circ} \mathrm{K}$)
the final antilog transfer function becomes:
$V_{\text {OUT }}=I_{\text {REF }} R_{\text {OUT }} / 10^{[V I N ~ R 2 / .066(R 1+R 2)]}$
or
$V_{\text {OUT }}=I_{\text {REF }} R_{\text {OUT }} / 10^{[\mathrm{VIN} / K]}$
To set $K=1 V /$ decade, $R_{2} /\left(R_{1}+R_{2}\right)=0.066$
If $R_{2}=470 \Omega, R_{1}=6.65 \mathrm{k} \Omega$
The bandwidth of the antilog amplifier circuit is approximately 500 kHz .

FIGURE 5: Antilogarithmic Amplifier

FIGURE 6: Log Ratio Amplifier, $\mathrm{V}_{\mathrm{OUT}}=\mathrm{K}$ LOG $\left(\mathrm{V}_{2} N_{1}\right), \mathrm{K}=1 \mathrm{~V} /$ Decade with Values Shown

LOG RATIO AMPLIFIER

The output of the log ratio amplifier is proportional to the ratio of its two input signals. The SSM-2100 is very well suited to this application because both the signal and reference inputs operate at true virtual ground. This eliminates the need for an external true current source as required by other types of log amplifiers.
The log ratio amplifier shown in Figure 6 has a dynamic range of 10^{5} to 10^{-1} if the output buffer of Figure 7 is not used. This is because the output amplifier $\left(A_{1}\right)$ can swing to a minimum of about 1.5 V below ground and can only sink about $300 \mu \mathrm{~A}$ maximum. Thus, the input current should not be more than one decade below the reference current.
For full four-quadrant operation, however, refer to the output buffer of Figure 7. The addition of this circuit will provide a $\pm 5 \mathrm{~V}$ output for reference/signal ratios from 10^{5} to 10^{-5} for a full 10 decade range.

FIGURE 7: Modification of Figure 6 for Four-Quadrant Operation

TRIMMING THE SSM-2100

Figure 8 shows the general trimming technique for the log and log ratio applications shown in Figures 3, 4 and 6. The trim schemes for scale factor (R_{i}), input offset ($\mathrm{R}_{x^{\prime}} \mathrm{R}_{\mathrm{y}}$), and output offset $\left(\mathrm{R}_{\text {fEF }}\right)$ factor are shown. For log ratio applications, the input offset trim can be duplicated for the reference input.
The scale factor trim scheme is identical in all applications. Simply replace R_{1} with a $6.2 \mathrm{k} \Omega$ resistor and $1 \mathrm{k} \Omega$ potentiometer.
Input offset trimming removes errors from input bias current as well as amplifier offset. For optimum trim integrity, the use of the positive and negative reference voltages yields high rejection to variations in power supply voltages.
Output offset errors are essentially due to the mismatch between the base-emitter voltages of Q_{1} and Q_{2}. The output offset adjustment ($\mathrm{R}_{\text {REF }}$) scheme shown applies to the inverting log amp and the antilog amplifier. Output offset is adjusted in the noninverting log amplifier by changing R_{5} in Figure 4. To adjust out the equivalent error in the log ratio amplifier, replace either of the $10 \mathrm{k} \Omega$ input resistors with a $9 \mathrm{k} \Omega$ resistor and $2 \mathrm{k} \Omega$ potentiometer.
Unlike an operational amplifier, a log amp can not be trimmed with $\mathrm{V}_{\text {IN }}=0$ since the log of zero would theoretically produce an infinite output voltage.

LOG AMPLIFIER TRIM PROCEDURE

Log amp trim for $K=1$:

1. Apply full-scale input voltage or current and adjust output offset for the proper output.
2. Apply an input signal one decade down from full-scale and adjust the scale factor for the desired output.
3. Finally, with the minimum input signal applied, adjust the input offset trim for the correct minimum scale output voltage or current.

ANTILOG AMPLIFIER TRIM PROCEDURE

Antilog trimming for $K=1$:

1. Set full-scale by grounding $\mathrm{V}_{\text {IN }}$ and adjusting the output offset trim until $\mathrm{V}_{\text {OUT }}$ is 10 V .
2. Apply $1 \vee$ to $V_{\text {IN }}$ and adjust the scale factor for 1 V output.
3. Set the $V_{I N}$ to the maximum value to be used and adjust input offset trim for the minimum desired output: Using $K=1$, adjust for $\mathrm{V}_{\text {OUT }}$ of 0.1 V with $\mathrm{V}_{\text {IN }}$ at 2 V .

FIGURE 8: Trimming the SSM-2100

FEATURES

- On-Chip 1:8 Demultiplexer, 8 Sample-and-Hold Capacltors and 8 Output Buffers
- Saves Space, Reduces System Cost
- Output Buffers Stable for $C_{i} \leq 500 p F$
- Output Swing Includes Negative Supply
- TTL and CMOS Compatible Logic Inputs
- 5 to 18 Volts Total Supply Operatlon
- Low Cost

APPLICATIONS

- Automatlc Test Equipment
- Process Control and Monitoring Systems
- Audio and Video Systems

ORDERING INFORMATION

PACKAGE	OPERATING
PLASTIC	TEMPERATURE
16-PIN	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
SSM2300P	

GENERAL DESCRIPTION

The SSM-2300 is an eight-channel CMOS multiplexed sample-and-hold device designed for voltage level distribution in $\mu \mathrm{P}$ controlled systems. On-chip functions include an 8-channel demultiplexer, 8 sample-and-hold capacitors and 8 output buffers. This function saves valuable board space and reduces system cost where multiple voltage levels are required.
The SSM-2300 can operate from single or dual supplies with both TTL and CMOS logic compatibility. Useful for adjusting amplifier offsets or VCA gains, one or more SSM-2300s can be used with a single DAC to provide multiple set points within a system. Applications are in ATE, audio and video, process control and monitoring systems.
For improved performance and system upgrade, request the PMI SMP-08 data sheet.

PIN CONNECTIONS

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Total Supply Range ... 18 V
Positive Supply ($\mathrm{V}_{+}-\mathrm{V}_{\mathrm{GND}}$) .. 18 V
Negative Supply ($\mathrm{V}-\mathrm{V}_{\mathrm{GND}}$) -10V
Storage Temperature Range
P Package .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering, 60 sec) $300^{\circ} \mathrm{C}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Operating Temperature Range $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

PACKAGE TYPE	$\Theta_{\text {IA }}$ (Note 1)	$\boldsymbol{\theta}_{\text {IC }}$	UNITS
16-Pin Plastic DIP (P)	82	39	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE:

1. $\Theta_{i A}$ is specified for worst case mounting condtions, l.e., $\Theta_{\mid A}$ is specified for device in socket for P-DIP.

ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	SSM-2300			
			MIN	TYP	MAX	UNITS
Supply Current	I_{s}	,	2	4	8	mA
Positive Supply Voltage	V_{+}	$\left(V_{+}-V_{G N D}\right)$	5	-	18	\checkmark
Negative Supply Voltage	$\mathrm{V}-$	$\left(V_{-}-V_{G N D}\right)$	-10	-	0	V
Logic High" ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{INH}$)	$\mathrm{V}_{\text {INH }}$	See Table 1	6	-		V
Logic Low (A, B, C, INH)	$V_{\text {INL }}$	See Table 1	-	-	0.8	V
Channel Select Time	${ }^{\text {t }}$		-	300	-	ns
Channe! Deselect Time	toff		-	300	-	ns
Inhibit Recovery Time	${ }^{\text {I }}$ NH	\cdots	-	150	-	ns
Buffer Offset	$V_{\text {os }}$	$0<V_{\text {iN }}<+13 \mathrm{~V}$	-	8	50	mV
Hold Step	V_{HS}	$0<V_{1 N}<+13 V$	-	4	8	mV
Acquisition Time	t_{A}	$0<V_{\text {IN }}<+13 \mathrm{~V}$	-	1.	-	$\mu \mathrm{s}$
Settling Time	t_{s}	$0<V_{\text {IN }}<+13 \mathrm{~V}$	-	2	-	$\mu \mathrm{s}$
Droop Rate	$\mathrm{dV}_{\mathrm{CH}} / \mathrm{dt}$	$0<\mathrm{V}_{\text {IN }}<+13 \mathrm{~V}$	-	500	1500	mV / s
Output Source Current	I Source	$0<V_{\text {IN }}<+13 \mathrm{~V}$	1.2	-	-	mA
Output Sink Current	$\mathrm{l}_{\text {SINK }}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{-}=\mathrm{GND}$	0.5	-	-	mA
InputOutput Voltage Range	$V_{\text {IN }}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to GND	0	-	11	V
Maximum Output Capacitive Load	C_{L} max		-	500	-	pF

Specifications subject to change; consult latest data sheet:

SIGNAL INPUT (PIN 3)

The signal input should be driven by a low impedance voltage source such as the output of an operational amplifier. The op amp should have a high slew rate and fast settling time if the SSM-2300's fast acquisition time characteristics are desired. As with all CMOS devices, all input voltages should be kept within range of the supply rails (i:e., $\mathrm{V}-\leq$ inputs $\leq \mathrm{V}+$) to avoid latch-up. If single supply operation is desired, an op amp such as the OP21, OP-80, or OP-90 with input and output voltage compliance including GND, can be used to drive pin 3. Split supplies, such as $\pm 7.5 \mathrm{~V}$, can be used for the SSM-2300 and the above mentioned op amps.
If the op amp driving pin 3 is powered by dual supplies, the circuit shown in Figure 1 should be used to avoid latch-up due to negative transients during power-up. The addition of a small capacitor as shown may be useful in preventing a large false hold step.

FIGURE 1: DAC Interface Circuit (SSM-2300 Single Supply, Op Amp Driver Split Supply)

LOGIC INPUTS (PINS 6, 9, 10 AND 11)

For $V+$ supplies up to +7.5 V , logic inputs can be driven by TTL or CMOS. For $\mathrm{V}+$ (of the SSM-2300) from +7.5 V to +12 V , TTL outputs should add pull-up resistors to the +5 V logic supply. For V_{+} of +12 V or greater, CMOS logic should be used (see Table 1).

TABLE 1: Control Input Switch Points (Volts)

$V+$	GND	V	$V_{I H}$	$V_{I L}$
5	0	-5	2.4	0.8
5	0	-10	2.4	0.8
3	0	\ddots	-12	2
7.5	0	-7.5	3	0.8
15	0	0	6	0.8
12	0	0	5	0.8

If TTL is used to drive the logic inputs, the $V+$ supply should be designed to come up before the logic supply, or, current limiting ($<10 \mathrm{~mA}$) resistors should be connected in series with the inputs to avoid a potential latch-up condition. Open collector or 74C series logic avoid this problem because of their limited current sourcing capability.

TABLE 2: Channel Decoding

Ping	Pin 10	Pin 11	Pin 6		
C	B	A	INH	CH	Pin
0	0	0	0	0	13
0	0	1	0	1	14
0	1	0	0	2	15
0	1	1	0	3	12
1	0	0	0	4	1
1	0	1	0	5	5
1	1	0	0	6	2
1	1	1	0	7	4
X	X	X	1	NONE	-

Table 2 shows the channel decoding for the SSM-2300 which is identical to that of 4051 type devices. When there is an address change, it is possible for two or more channels to momentarily be connected to the input at the same time. In order to avoid potential crosstalk problems, either the input signal should be kept at its previous level for 500 ns after the address change (Figure 2a) or preferably INH (pin 6) should be exercised as in Figure 2b.

SUPPLIES (PINS 7, 8, AND 16)

The supply voltages $V+$ and V - establish the input and output voltage range which is :
$\mathrm{V}-\leq$ inputs, outputs $\leq \mathrm{V}_{+}-2 \mathrm{~V}$

V+ and GND determine the control input logic levels and switch points (see Table 1).

FIGURE 2: Decode Timing

The total supply range is 7 to 15 V nominal and 5 to 18 V absolute maximum, however, several specifications including acquisition time, offset, and output voltage compliance will degrade for a total supply less than 7 V . The positive supply current is typically 4 mA with the outputs unloaded. If split supplies are used, the negative supply should bebypassed (i.e., parallel $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ capacitors to GND). The hold capacitors are connected to this supply pin and any noise on it will feed through to the outputs.

SUPPLY SEQUENCING

If TTL logic is used, the SSM-2300 V+ supply should be designed to come up before the logic supply; otherwise current limiting resistors should be connected in series with the logic inputs to prevent latch-up. Resistors should be chosen to limit current below 10 mA .

OUTPUT BUFFERS (PINS 1, 2, 3, 4, 5, 12, 13, 14, AND 15)

The buffer offset specification is $\pm 50 \mathrm{mV}$. This is approximately 1 LSB of an 8 -bit DAC with a 10 V full scale. The change in offset over the output range is typically 3 mV . The hold step (the voltage shift when a channel is deselected) is about 4 mV with little variation. The droop rate of a held channel is $\pm 500 \mathrm{mV} / \mathrm{second}$ typical and $\pm 1500 \mathrm{mV} / \mathrm{second}$ maximum (input and output(s) at opposite extremes of the voltage compliance range).
The buffers were designed primarily to drive loads connected to ground. The outputs can source more than 1.2 mA each over the full voltage output range, but have limited current sinking capability near V-. In split supply operation, symmetrical output swing can be obtained by restricting the output range to 2 V from either supply. The output impedance with the output sourcing current is approximately 0.1Ω. With the output sinking current, the impedance is approximately 1Ω.
The SSM-2300 buffers eliminate potential stability problems associated with external buffers as the outputs are stable with. capacitive loads up to 500pF. However, the SSM-2300 buffer outputs are not short-circuit protected. Care should be taken to avoid shorting any of the outputs to the supplies or ground.

TYPICAL APPLICATION

GENERAL INFORMATION

HANDLING

By design consideration, the SSM-2300 gate inputs have a resistor/diode protection network. Inherent P-N junction diodes provide diode protection for all gate inputs and outputs. At the input and output interfaces, the diode networks of the SSM2300 are protected from gate-oxide failure (70-100 volt limit) for static discharge or signal voltages up to 1,000 to 2,000 volts under most transient or low current conditions.

OPERATING

All unused inputs should be connected to either V_{+}or V -depending on the appropriate logic circuit. For connector-driven inputs which may temporarily become unterminated, a pull-up resistor to V_{+}or V-should be used with a value ranging from 0.2 to $1 \mathrm{M} \Omega$.

NOTE: Do not apply signals to the SSM-2300 with power off unless the input current's value is limited to less than 10 mA .

APPLICATIONS

For signal frequencies near DC, almost any number of SSM2300s can be connected in parallel; for example, in process control applications this allows a single DAC to service many control channels simultaneously (see Typical Application schematic). The $1 \mu \mathrm{~s}$ acquisition time, the number of channels, and the address timing determines the maximum update rate. Sixteen channels of full band audio can be demultiplexed with a single DAC and two SSM-2300s.

Application Notes

Application Notes PMI Products
AN-111 A Balanced Summing Amplifier SSM-2015, OP-41 167
AN-112 A Balanced Input High-Level Amplifier SSM-2015 169
AN-113 An Unbalanced, Virtual Ground Summing Amplifier SSM-2134 171
AN-114 A High-Performance Transformer-Coupled Microphone Preamplifier SSM-2015, 2016 172
AN-115 Balanced Low-Noise Microphone Preamplifier Design SSM-2015 174
AN-116 AGC Amplifier Design with Adjustable Attack and Release Control .SSM-2013 176
AN-121 High-Performance Stereo Routing Switcher .SSM-2402, 2015, 2134 178
AN-122 A Balanced Mute Circuit for Audio Mixing Consoles .SSM-2402, 2122, 2134 181
AN-123 A Constant Power "PAN" Control Circuit for Microphone Audio Mixing. SSM-2134 183
AN-124 Three High-Accuracy RIAA/IEC MC and MM Phono Preamplifiers .SSM-2015, 2134 185
AN-125 A Two-Channel Dynamic Filter Noise Reduction System SSM-2120, 2134 190
AN-127 An Unbalanced Mute Circuit for Audio Mixing Channels SSM-2402, 2134 192
AN-128 A Two-Channel Noise Gate SSM-2120; 2134 194
AN-129 A Precision Sum and Difference (Audio Matrix) Circuit SSM-2015, 2134, OP-215 196
AN-130 A Two-Band Audio Compressor/Limiter SSM-2120, 2134 197
AN-131 A Two-Channel VCA Level (Volume) Control Circuit SSM-2122, 2134, OP-215 200
AN-133 A High-Performance Compandor for Wireless Audio Systems SSM-2120, 2134 202
AN-134 An Automatic Microphone Mixer SSM-2015, 2120, 2134 206
AN-135 The Morgan Compressor/Limiter SSM-2014, 2110, MAT-04,
SSM-2210 209

APPLICATION NOTE 111

The summing amplifier circuit shown in Figure 1 represents an excellent virtual ground summing amplifier using a balanced differential design that includes extremely low noise and wide bandwidth as featured by the SSM-2015. Any size audio mixing system can benefit from balanced virtual node mixing (summing). The low cost and exceptional performance of this design can be incorporated in any system with balanced or mixed balanced and unbalanced input sources.
$1 C_{2}$, the PMI OP-41, serves as a DC servo-amplifier that is referenced to signal ground. The circuit functions as an integrator with a long time constant that retains the integrity of low frequency audio signals down to 5 Hz , and keeps $e_{O U T}=O V_{D C}$ $\left(\pm 10 \mathrm{mV}_{\mathrm{OC}}\right)$. The OP-41 is a FET input amplifier, with low input offset voltage (V_{OS}) and high input impedance. Although many low performance JFET/CMOS operational amplifiers can be employed, the summing output $V_{D C}$ is a function of the servo's input offiset voltage and its temperature coefficient ($\Delta \mathrm{V}_{0 S} / \Delta \mathrm{T}$), which must be kept low for direct coupled summing applications.

In this design, the following facts predominate: $\boldsymbol{\theta}_{\mathrm{S}}=0$, and $\mathrm{i}_{\mathrm{S}}=$ $0 . e_{I N}$ is the algebraic sum of the input(s) $e_{I N 1}, e_{I N 2}, e_{I N 3}, e_{I N n}$ and etc. $e_{\mathrm{OUT}}=\left[\Theta_{\mathrm{IN} 1}\left(R_{F} / R_{I N 1}\right)+e_{I N 2}\left(R_{F} / R_{I N 2}\right)+e_{I N 3}\left(R_{F} / R_{I N 3}\right)\right.$
$\left.+e_{I N n}\left(R_{F} / R_{i N n}\right)\right]$, etc. The input impedance therefore equals $R_{I N 1}, R_{I N 2}, R_{I N 3}, R_{I N n}$, etc. The overall gain of the circuit is set by R_{F} and the gain of the individual channels can be adjusted independently by the values of $R_{i N 1}, R_{i N 2^{\prime}} R_{i N 3^{\prime}}, R_{i N n^{\prime}}$, etc.
For individual source input(s), gain is $A_{O}=R_{F} / R_{I N}$.
The circuit configuration produces linear signal mixing at the summing nodes (IC, pins 10,11), whereas $e_{s}=0$, therefore no interaction occurs between the source inputs. Owing to the fact that the SSM-2015 is a bipolar transistor device, the noise is low $\left(1.3 \mathrm{nV} / \sqrt{\mathrm{Hz}}\right.$). The commonly used values of $10 \mathrm{k} \Omega$ for R_{F} and $R_{\text {IN }}$ are optimal for both minimum noise and previous stage loading, eliminating the need for buffer amplifiers and their noise contribution.

The input common-mode rejection for the SSM-2015 is typically 100 dB as a result of true differential input topology. The differential thermal noise and DC offset drift is nearly eliminated by the common substrate construction employed. To exploit the high CMR of the SSM-2015, all signal resistors should be matched resistor networks or should employ 0.5% or better resistor tolerances.

FIGURE 1

The output circuit topology of the SSM-2015 is complementary bipolar producing overall performance of $6 \mathrm{~V} / \mu \mathrm{s}$ slew rate, and is able to drive a $2 \mathrm{k} \Omega$ unbalanced load. The circuit described can be directly coupled, eliminating coloration and distortion associated with coupling capacitors. The circuitry following this amplifier could be AC (capacitor) coupled if the DC servo $I C_{2}$ offset voltage of $\pm 10 \mathrm{mV} \mathrm{DC}_{\mathrm{C}}$ is objectionable.
Audio performance challenges the best test equipment that might be used to measure high performance analog designs. For example: worst case THD for this circuit measures less than 0.008%, and IMD less than 0.02% over a band-width of 10 Hz to 20 kHz . See Table 1 for more performance details.

TABLE 1: Circuit Performance Specifications

Frequency Response (dB 20Hz to 20kHz)	± 0.02
S/N Ratio @ +23dBu	103 dB
TMD + Noise (@ +23dBu 20Hz to 20kHz)	0.008%
IMD (@ +23dBu SMPTE $60 \mathrm{~Hz} \& 4 \mathrm{kHz}, 4: 1)$	0.015%
CMRR (60Hz)	100 dB
Slew Rate	$6 \mathrm{~V} / \mu \mathrm{s}$
Output Voltage (2ks load)	+23 dBu or $11 \mathrm{~V}_{\mathrm{FMS}}$

Precision Monolithics Inc

APPLICATION NOTE 112

The balanced amplifier in Figure 1 utilizing the SSM-2015 features adjustable gain and can accept nominal audio signals from -27.5 dBu to +0 dBu with more than 30 dB of headroom. The input terminals can tolerate common-mode voltages of 30 volts peak-to-peak. Common-mode noise rejection is greater than 100 dB at $1,000 \mathrm{~Hz}$, while the EIN (Equivalent Input Noise) is a low -124 dBu .

The $I C_{1}$ amplifier circuit is gain adjustable, and the design utilizes a 12-position switch with 2.5 dB steps. Other resistor values can be calculated to accommodate custom gain requirements.
IC C_{1} is PMI's SSM-2015 true differential input IC amplifier. Its input circuit utilizes two identical low noise bipolar transistors, with access to the emitters that provide the gain adjustment. R_{G} (R_{14} through R_{24}) sets the amplifier's gain using the equation:

Gain $=3.5+\left(\frac{20 \times 10^{3}}{R_{G}}\right)$ for $R_{8}, R_{18}=10.0 \mathrm{k} \Omega$
The emitter feedback design exhibits both minimum noise and maximum common-mode rejection while retaining a very high
input impedance. The output circuit topology is complementary bipolar producing $6 \mathrm{~V} / \mu \mathrm{s}$ slew rate, and is able to drive a $2 \mathrm{k} \Omega$ unbalanced load. The circuit described can be directly coupled eliminating the distortion associated with coupling capacitors. Circuitry following this amplifier could be AC (capacitor) coupled if input normal-mode DC voltages are expected at the input of this circuit. Worst case THD measures less than 0.008%, and IMD less than 0.015%.
Input components $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{R}_{1}$, and R_{2} constitute a single pole low-pass filter that limits the inpüt voltage slew rate, curbs interface transient intermodulation distortion, and keeps the amplifier from slewing. The input network has little effect on phase response within the pass band of 20 Hz to 20 kHz . To maintain high frequency common-mode performance, capacitors C_{1} and C_{2} should be matched for 1% tolerance.
For an output voltage of -10 dBu , the balanced input amplifier circuit has an input sensitivity range of 0.0 dBu to -27.5 dBu . The common-mode voltage trim is included for maximizing application common-mode noise reduction and also allows the use of low cost components.

FIGURE 1

$S W$	$G_{d B}$	$e_{1 N}(d B)$	R_{G}	VALUE ($\Omega)$
1	10.0	0	R	ω
2	12.5	-2.5	R_{14}	28.0 k
3	15.0	-5.0	R_{15}	9.53 k
4	17.5	-7.5	R_{16}	4.99 k
5	20.0	-10.0	R_{17}	3.09 k
6	22.5	-12.5	R_{18}	2.05 k
7	25.0	-15.0	R_{19}	1.40 k
8	27.5	-17.5	R_{20}	1.00 k
9	30.0	-20.0	R_{21}	715
10	32.5	-22.5	R_{22}	511
11	35.0	-25.0	R_{23}	374
12	37.5	-27.5	R_{24}	280

Specific gain can be calculated from the equation:
Gain $_{d B}=20 \log \left[3.5+\left(\frac{20 \times 10^{3}}{R_{G}}\right)\right]$ for $R_{8}, R_{18}=10.0 \mathrm{k} \Omega$

TYPICAL APPLICATIONS

This design is ideal for use as the input amplifier in audio distribution amplifiers, for balanced input audio routing switchers, as the input buffer ahead of the A-to-D codec in digital recording and mixer equipment, or for the low noise high level input of mixing consoles.

TABLE 1: Circuit Performance Specifications

Frequency Response (dB 20Hz to 20kHz)	10.1
S/N Ratio @ +23dBu	103 dB
THD + Noise (20 Hz to 20 kHz) @ +23dBu	0.008%
IMD (SMPTE $60 \mathrm{~Hz} \& 4 \mathrm{kHz}, 4: 1) @+23 \mathrm{dBu}$	0.015%
CMRR (60Hz)	100 dB
Slew Rate	$6 \mathrm{~V} / \mu \mathrm{s}$
Output Voltage (2kS load)	+23 dBu or 11 V RMs

APPLICATION NOTE 113

The summing amplifier circuit shown in Figure 1 represents a splendid unbalanced virtual ground summing amplifier. The design utilizes the SSM-2134, PMI's superior version of the popular NE5534 bipolar operational amplifier. This low noise amplifier can now be implemented where most equipment manufacturers use FET input operational amplifiers. The circuit described features reduction in noise, temperature, and input impedance effects on static condition output voitages, and elimination of unity gain instability.
The SSM-2134 helps reduce wide-band noise figures by 3 dB to 10 dB , while improving the frequency and phase response performance. Only minimal value compensation $\left(\mathrm{C}_{2}\right)$ is required for the SSM-2134. In the feedback loop, C, improves stability while keeping the slew rate at $10 \mathrm{~V} / \mu \mathrm{s}$ and bandwidth greater than 100 kHz .

In this circuit, note the following design facts: $e_{\text {OUT }}$ is the algebraic sum of the input voltage(s) $e_{1 N 1}, e_{I N 2}, e_{I N 3}, \theta_{I N n}$ and etc. $e_{\text {OUT }}=(-)\left[e_{I N 1}\left(R_{F} / R_{I N T}\right)+e_{I N 2}\left(R_{F} / R_{I N 2}\right)+e_{I N 3}\left(R_{F} / R_{I N 3}\right)+\right.$ $\left.e_{1 N n}\left(R_{F} / R_{I N n}\right)\right]$, etc. The individual input impedance therefore equals $R_{i N 1}, R_{i N 2}, R_{i N 3}, R_{i N n}$, etc. The overall gain of the circuit is set by R_{F}, and the gain of the individual channels can be adjusted independently by the values of $R_{\text {IN1 }}, R_{I N 2}, R_{I_{N 3}}$, and $\mathrm{R}_{\mathrm{INn}{ }^{\prime}}$
For individual source input(s), voltage gain $=R_{F} / R_{I N}$.
The circuit configuration produces linear signal mixing at the summing node (common tie point $C_{1}, R_{F}, R_{I N 1}, R_{I N 2}, R_{I N 3}$ and $R_{\text {inn }}$), whereas $e_{s}=0$, there is no interaction between the source inputs. Owing to the fact that SSM-2134 is a bipolar device, noise is low ($2.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$). The commonly used values of $10 \mathrm{k} \Omega$ for R_{F} and $R_{I N}$ are optimal for both minimum noise and previous stage loading, eliminating the need for buffer amplifiers and their noise contribution.

This design produces maximum amplifier bandwidth with unconditional circuit stability for both input and output impedance (reactive or not) variations.

FIGURE 1

TABLE 1: Circuit Performance Specifications

Frequency Response (20Hz to 20 kHz$)$	$\pm 0.02 \mathrm{~dB}$
S/N Ratio $(@+23 \mathrm{dBu})$	104 dB
THD + Noise $(@+23 \mathrm{dBu}, 20 \mathrm{~Hz}$ to 20 kHz$)$	0.007%
IMD (SMPTE 60 Hz and $4 \mathrm{kHz}, 4: 1)$	0.015%
Slew Rate	$10 \mathrm{~V} / \mu \mathrm{s}$
Output Voltage (2k Ω load)	+23.3 dBu or $11.3 \mathrm{~V}_{\text {RMS }}$

APPLICATION NOTE 114

The SSM-2015 or SSM-2016 low noise differential amplifier is utilized in a transformer-coupled microphone preamplifier. The circuit shown in Figure 1 represents a microphone preamplifier with high performance, wide dynamic range; and ultra low noise. The design features a Jensen transformer-coupled preamplifier circuit with balanced/floating input, 1500Ω input loading, three step input attenuator, phantom microphone powering, and twelve amplifier gain choices. Although the design shown includes a twelve position gain selector, fixed gain applications can utilize the component value calculations and formula provided.

The design provides microphone input loading of 1500Ω. Input loading is capacitive reactive, and at higher input voltage frequencies, the low-pass network and transformer characteristics help attenuate unwanted normal-mode RF and ultrasonic voltages that might be present at the input terminals.

The input circuit contains a three position input attenuator used to optimize source levels versus amplifier headroom. As usual, it's a compromise of headroom and preamplifier signal-tonoise. The attenuation is $0 \mathrm{~dB},-10 \mathrm{~dB}$, and -20 dB while maintaining an input impedance of 1500Ω.

A phantom microphone powering circuit is included for condenser microphones that require 24 to 48 volts DC power.

The common-mode voltage range is limited only by the transformer's primary-to-shield breakdown voltage. Common-mode rejection is a product of the primary-to-secondary isolation and provides detachment of the microphone wiring environment. Although the balanced single-pole low-pass filter at the input terminals provides protection from radio frequency interference, this network, along with the capacitive effect of the primary winding to the grounded shield, plus the phantom powering resistors present a circuit path for external RF voltages to enter the preamplifier's circuit ground. A carefully planned single point (power supply) grounding, and the true balanced and differential input topology of the SSM-2015/2016 amplifier will eliminate unwanted external noise signals.

The network composed of R_{4} and C_{6} at the transformer secondary serves two functions. It minimizes transformer rising secondary winding signal amplitude with rising input frequency and deters secondary ringing, while helping to prevent amplifier input slewing. The SSM-2015/2016 differential input improves transformer performance substantially as compared with the conventional unbalanced design.

FIGURE 1

The circuit design incorporates a gain switch with twelve (12) calculated gain settings. The Jensen transformer, model JE-110K-HPC used in this application has a voltage gain of 17.9 dB . For an output voltage of -10 dBu , the microphone amplifier circuit has an input sensitivity range of -65 dBu to -17.5 dBu , with a typical output headroom of 33 dB . The preamplifier circuit shown is gain adjustable from 9.6 dB to 39.6 dB in 2.5 dB steps.
PMI's SSM-2015/2016 input circuit utilizes two identical low noise bipolar transistors, with access to the emitters, that provide the gain adjustment. The output circuit topology is complementary bipolar producing $6 \mathrm{~V} / \mu \mathrm{s}$ (2015) and $10 \mathrm{~V} / \mu \mathrm{s}$ (2016) slew rate into a $2 k \Omega$ unbalanced load.
$R_{G}\left(R_{17}\right.$ through $\left.R_{28}\right)$ sets the amplifier gain using the equation:
$V_{G}=3.5+\left(\frac{20 \times 10^{3}}{R_{G}}\right)$
for R_{14}, and $R_{15}=10.0 \mathrm{k} \Omega$.

SW	\mathbf{G}_{dB}	$\boldsymbol{\theta}_{\mathrm{IN}}(\mathrm{dB})$	\mathbf{R}_{G}	VALUE (Ω)
1	9.6	-37.5	R_{17}	100 k
2	12.1	-40.0	R_{18}	37.4 k
3	14.6	-42.5	R_{19}	10.7 k
4	17.1	-45.0	R_{20}	5.49 k
5	19.6	-47.5	R_{21}	3.32 k
6	22.1	-50.0	R_{22}	2.15 k
7	24.6	-52.5	R_{23}	1.47 k
8	27.1	-55.0	R_{24}	1.05 k
9	29.6	-57.5	R_{25}	750
10	32.1	-60.0	R_{26}	549
11	34.6	-62.5	R_{27}	402
12	39.6	-65.0	R_{28}	215

*Input attenuator set to the OdB position.

Unspecified overall circuit gain can be calculated from the equation:
$G_{B B}=20 \log \left[3.5+\left(\frac{20 \times 10^{3}}{R_{G}}\right)\right]+17.9$

TYPICAL PERFORMANCE

Frequency response versus amplitude is $\pm 0.2 \mathrm{~dB}$ from 20 to $20,000 \mathrm{~Hz}$, and THD + noise is better than 0.03% over gain and frequency range described, with a typical EIN (Equivalent Input Noise) of -127 dBu . See Table 1 for detailed performance specifications.

For applications where additional headroom is required, the SSM-2016 should be used. The SSM-2016 can be powered with up to $\pm 36 \mathrm{~V}_{D C}$ rails and drive 600Ω loads. If $\pm 24 \mathrm{~V}_{\text {DC }}$ rails are used, headroom increases to 35.7 dB (typically), while the EIN remains at -127 dB . As a consequence of the increased power supply voltage, the SSM-2016 package power dissipation will typically be 600 mW with $\pm 24 \mathrm{~V}_{\mathrm{Dc}}$ rails (no signal), and will rise to 725 mW with worst case signal conditions into 600Ω load.
For $\pm 36 V_{\text {DC }}$ power rails, although the headroom increases to 39.3 dB , the SSM-2016 will dissipate 1.2 watts with no signal applied, and 1.5 watts worst case signal conditions into 600Ω load, Therefore IC package cooling should be taken into consideration. Please see the SSM-2016 data sheet for IC pin-out connections and recommended compensation capacitor values. All other circuit component values shown here apply.

The transformer-coupled microphone preamplifier circuit described above demonstrates robust, real-world usage refinements, along with most operational features required by equipment designers to deliver the highest performance. It will handle the most hostile microphone environments without distress to either the circuit or the user.

TABLE 1: Circuit Performance Specifications

AN-115 BALANCED LOW NOISE MICROPHONE PREAMPLIFIER DESIGN

APPLICATION NOTE 115

The SSM-2015 differential amplifier is utilized in a transformerless, active-balanced input amplifier. The circuit shown in Figure 1 provides a microphone preamplifier design with excellent performance and low noise. The design features a transformerless preamplifier circuit with true-balanced input, 1500Ω input loading, phantom microphone powering, and high com-mon-mode rejection. The design shown also includes a twelve position gain selector, or for fixed gain usage, component value calculations.

The design includes microphone input loading of 1500Ω, but the load resistor can be changed to accommodate other applications. Input loading is capacitive reactive at higher frequencies to attenuate unwanted RF and ultrasonic voltages at the input terminals.
The phantom microphone powering circuit provides power for condenser microphones that require 24 to 48 volts DC. The zener diodes $\mathrm{CR}_{1}, \mathrm{CR}_{2}, \mathrm{CR}_{3}$, and CR_{4} protect the input transistors of the SSM-2015 when connecting the microphone to the preamplifier circuit.

The common-mode voltage range is ± 5.5 volts. Its commonmode rejection is optimized for most applications by the truebalanced and differential input topology of the SSM-2015. A balanced single pole low-pass filter at the input terminals provides protection for the circuit from radio frequency interference and prevents slewing of the SSM-2015 amplifier. The output circuit topology is complementary bipolar producing $6 \mathrm{~V} /$ μ s slew rate, and able to drive a $2 \mathrm{k} \Omega$ unbalanced load.

The circuit design incorporates a gain switch with twelve (12) calculated gain settings. For an output voltage of -10 dBu , the microphone amplifier circuit has an input sensitivity range of -65 dBu to -27.5 dBu , and an output headroom of 33 dB . The overall circuit gain is adjustable from 27.5 dB to 55 dB in 2.5 dB steps.

SW	\mathbf{G}_{dB}	$\mathbf{e}_{1 \mathrm{~N}}(\mathrm{~dB})$	\mathbf{R}_{G}	VALUE (Ω)
1	27.5	-37.5	R_{15}	1.00 k
2	30	-40	R_{16}	715
3	32.5	-42.5	R_{17}	511
4	35	-45	R_{18}	374
5	37.5	-47.5	R_{19}	280
6	40	-50	R_{20}	205
7	42.5	-52.5	R_{21}	154
8	45	-55	R_{22}	115
9	47.5	-57.5	R_{23}	86.6
10	50	-60	R_{24}	63.4
11	52.5	-62.5	R_{25}	47.5
12	55	-65	R_{26}	35.7

FIGURE 1

SSM-2015 input circuitry utilizes two identical low noise bipolar transistors, with access to the emitters that provide the gain adjustment. $R_{G}\left(R_{15}\right.$ through $\left.R_{26}\right)$ sets the amplifiers gain using the equation:

Gain $=3.5+\left(\frac{20 \times 10^{3}}{R_{G}}\right)$ for $R_{9}, \& R_{13}=10.0 \mathrm{k} \Omega$
Unspecified gain can be calculated from the equation:
$\operatorname{Gain}_{\mathrm{dB}}=20 \log \left[3.5+\left(\frac{20 \times 10^{3}}{R_{G}}\right)\right]$
The frequency response amplitude is $\pm 0.1 \mathrm{~dB}$ from 20 to $20,000 \mathrm{~Hz}$, and THD + noise of better than 0.03% over the gain range described with a typical EIN (Equivalent Input Noise) of -124 dBu .

The transformerless microphone preamplifier circuit described above demonstrates real-world usage refinements and includes most operational features required by equipment designers.

TABLE 1: Circuit Performance Specifications

Frequency Response (20Hz to 20kHz)	$\pm 0.1 \mathrm{~dB}$
THD + Noise (@ +23dBu, 20Hz to 20kHz)	0.03%
IMD (@+23dBu, SMPTE $60 \mathrm{~Hz} \& 4 \mathrm{kHz}, 4: 1)$	0.05%
EIN (Equivalent Input Noise, 150Ω source)	-124 dB
CMR (Common-Mode Rejection at 1kHz)	105 dB
Slew Rate	$6 \mathrm{~V} / \mu \mathrm{s}$
Output Voltage (2k Ω load)	+23 dBu or 11 V RMS
Output Headroom (2k load, -10 dBu nominal)	33 dB

Precision Monolithics lnc.

APPLICATION NOTE 116

The automatic gain control (AGC) amplifier described below and shown in Figure 1, features selectable gain reduction compression ratios and time domain adjustable AGC attack and release. This design employs the SSM-2013 VCA , SSM2110 precision level detector, two SSM-2134 low noise op amps, and an OP-215 FET input dual op amp.

The design features an inverting or noninverting input buffer amplifier, a voltage controlled amplifier with adjustable attack and recovery characteristics, driven by a true RMS level detector. Additionally, it provides selectable gain reduction compression, adjustable AGC output level, and maximum gain limit controls. Signal-to-noise ratio is better than 100 dB and the RMS level detector allows the AGC amplifier to operate transparently throughout the audio spectrum. The gain recovery is linear and time adjustable, and has maximum gain limiting (gating) to preclude input source noise floor rise.

The input circuit includes a line level (-10 dBu to 0 dBu) buffer amplifier, that accepts inverting or noninverting inputs with greater than $10 \mathrm{k} \Omega$ loading impedance. The buffer also isolates the input source from the compressor gain reduction ratio selector, and limits step function slewing voltage.

The six-position gain reduction selector that follows the input amplifier provides adjustable compression that smoothes the AGC action: Six GAIN REDUCTION slope ratios of 2 to 22 can be selected, thus reducing the irritating "hole producing and pumping" character of most AGC circuits. The SSM-2013 VCA is chosen for its predictable behavior and its high performance. The dynamic range exceeds 94 dB over the frequency range 20 Hz to 20 kHz . Over this frequency range, the amplifier achieves typically less than 0.01% THD + noise, and 0.03% IMD.

The SSM-2110's precision rectifier circuit produces the true RMS output that comprises a level detector. It results in a consistent and precise AGC action that retains good signal dynamics while leveling the input signal. It responds to the audio signal power density in a manner similar to human hearing.

Following the precision RMS rectifier is the VCA control voltage conditioning circuits. Constructed around U_{6} (OP-215), the FET-input amplifier forms an integrator while the other amplifier provides the VCA control port buffer. The AGC output level is set by the rectified signal voltage compared to the reference voltage from the OUTPUT LEVEL control.

FIGURE 1

The AGC attack and compression response is altered by adjusting the integrator charging time constant or integrator wave shape current. The three-position ATTACK switch allows selection of fast, medium, and slow compression and AGC response. When the slow position is selected, an insignificant amount of compression will take place, while fast and medium combine compression with the AGC action. The AGC release rate is controlled by a constant current discharge of the integrator capacitor. The recovery time constant is linear and adjusted by changing the integrator discharge current supplied by Q_{1} and regulated by the RELEASE rate control.
The SSM-2134 has been selected for its low noise and high performance characteristics. The AGC circuit described is of the feedback class, that is, the level detecting rectifier follows the voltage controlled amplifier stage. This class of AGC circuit combined with the complementary gain reduction compression, driven by RMS level detection, and adjustable attack and release AGC action, allows this circuit to be as unobtrusive or as conspicuous as desired.
The flexibility and high performance of this design, along with the simplicity and cost effectiveness, allows this design to be suitable for incorporating in mixing console designs, or in standalone products.

TABLE 1: Circuit Performance Specifications

Input Voltage Range (Nominal for OdBu Out)	$\begin{aligned} & -26 \mathrm{dBu} \text { to }+10 \mathrm{dBu} \\ & \left(6 \mathrm{mV} \text { to } 2.45 \mathrm{~V}_{\mathrm{RMS}}\right) \end{aligned}$
Rectifier Type	RMS
AGC Amplifier Class	Feedback
Attack Time	20 to 200 ms
Recovery Time (6dB)	3 to 32 SEC
VCA Feedthrough (Trimmed)	$-100 \mathrm{~dB}$
Gain Limit Range (Gain Reduction 22) -	-26 dBu to -12 dBu
Frequency Response (20 Hz to 20 kHz)	$\pm 0.2 \mathrm{~dB}$
S/N Ratio (@ $\pm 10 \mathrm{~dB}$ Gain)	106dB
THD + Noise (@ +23dBu, 20Hz to 20kHz)	z) 0.01\%
IMD (@+23dBu, SMPTE 60Hz \& 4kHz, 4:1	4:1) 0.02\%
Output Voltage Slew Rate	$6 \mathrm{~V} / \mu \mathrm{s}$
Output Voltage (2k Load) +	+22 dBu or $10 \mathrm{~V}_{\mathrm{RMS}}$

APPLICATION NOTE 121

The SSM-2402 Dual Audio Switch comprises the nucleus for this 16 channels-to-one high performance stereo audio routing switcher, which features negligible noise and low distortion over the frequency range of 20 Hz to 20 kHz . This performance is achieved even while driving 600Ω loads at signal levels up to +30 dBu .

The SSM-2402 affords a much simplified electrical design and printed circuit board layout, along with reduced manufacturing cost, when compared with discrete JFET circuits of similar performance. The electrical performance of the design described is vastly superior to CMOS switch designs, which are more prone to failure resulting from electrical static discharge.
The switching control of the SSM-2402 may be activated by conventional mechanical switches or 5 volt TTL or CMOS logic circuits. The application shown utilizes a simple mechanical control switch for illustration purposes only. Many diverse X / Y control schemes, destination control, or computer controlled designs can be utilized.

The "T" configuration of the SSM-2402 switch provides excellent ON-OFF isolation. The SSM-2402 also features 7 ms ramped turn on and 4 ms ramped turn off for click-free switching. Additionally, the switch has a break-before-make switching sequence. Both features become significant in large audio switching systems where the audio path can pass through multiple switching elements. Such controlled switching is very important in large systems used in broadcast program switching or in production work.
The application circuit design also employs the SSM-2015 balanced input amplifier (Figure 1). The input impedance is high ($\sim 100 \mathrm{k} \Omega$), balanced or unbalanced. The input circuit incorporates a single pole RF filter with a cutoff frequency set at 145 kHz . In addition, the input circuit attenuates the signal by 25 dB and extends the common-mode input voltage range to ± 98 volts peak, with common-mode rejection greater than 70 dB from 20 Hz to 20 kHz . The SSM-2015 is set to produce a 15 dB gain. The signal drive level into the SSM-2402 switch is then

FIGURE 2: Switcher Functional Block Diagram
+10 dBu with a +20 dBu input level and +14 dBu peak, well within ideal operating range. Good signal-to-noise is maintained, with generous head-room available by electing to use $\pm 18 \mathrm{VDC}$ power supply voltages.
The routing switcher bus carries high level unbalanced audio, but is driven with low impedance sources. With the output impedance of the SSM-2015 at virtually 0Ω and the SSM-2402 switch ON, resistance is typically 60Ω. Bus-to-bus crosstalk is exceptionally low. For example, assuming 14 pF coupling between buses and 20 kHz signal, the crosstalk (isolation) exceeds 80 dB . The 14 pF would be representative for the 16×1 stereo design shown. Shielding of the buses with a printed circuit board ground plane and physically isolating the input and output circuits will reduce the crosstalk even further. The "T" configuration of the SSM-2402 switch virtually eliminates crosstalk between the various input signal sources.

The output amplifier incorporates a buffer amplifier that provides 4dB of gain (nominally), with adjustable output level trim control. The buffer also isolates the switching bus from the balanced output amplifier circuit. The balanced output is designed to drive 600Ω loads and utilizes two SSM-2134 IC amplifiers. The differential design increases drive capability, yet increases the heat dissipation surface area, and keeps IC package temperature well within safe operating limits, even when driving 600Ω loads. The SSM-2134 is recommended due to its low noise, wide frequency response, and output drive current capabilities.

Overall performance of the 16×1 stereo switcher is noteworthy. Input-to-output frequency response is flat to within 1 dB over a 10 Hz to 50 kHz band. Total harmonic distortion plus noise is less than 0.03%, from 20 Hz to 20 kHz . SMPTE intermodulation distortion is less than 0.02%. The use of $\pm 18 \mathrm{VDC}$ power supplies produces a +30 dBm clip level, even when driving 600Ω loads.

TABLE 1: Circuit Performance Specifications

Max Input Level	$+30 \mathrm{dBu}$
Input Impedance, Unbalanced	$100 \mathrm{k} \Omega$
Input Impedance, Balanced	$200 \mathrm{k} \Omega$
Common-Mode Rejection (20 Hz to 20 kHz)	$>70 \mathrm{~dB}$
Common-Mode Voltage Limit	$\pm 98 \mathrm{~V}$ Peak
Max Output Level	$+30 \mathrm{dBu} / \mathrm{dBm}$
Output Impedance	67Ω
Gain Control Range	$\pm 2 \mathrm{~dB}$
Output Voltage Slew Rate	6V/us
Frequency Response ($\pm 0.05 \mathrm{~dB}$)	20 Hz to 20 kHz
Frequency Response ($\pm 0.5 \mathrm{~dB}$)	10 Hz to 50 kHz
THD + Noise (20 Hz to $20 \mathrm{kHz},+8 \mathrm{dBu}$)	0.005\%
THD + Noise (20 Hz to $20 \mathrm{kHz},+24 \mathrm{dBu}$)	0.03\%
IMD (SMPTE $60 \mathrm{~Hz} \mathrm{\&} \mathrm{4kHz}, \mathrm{4:1}, \mathrm{+24dBu)}$	0.02\%
Crosstalk (20 Hz to 20kHz)	$>80 \mathrm{~dB}$
S/N Ratio @ OdB Gain	135 dB

APPLICATION NOTE 122

The SSM-2402 Dual Audio Switch enhances the performance and simplifies the design of balanced high level switching (Mute) circuits used in audio mixing consoles. The use of the SSM-2402 and SSM-2134 creates a design that has negligible transient noise (as a result of signal switching), and exceptionally low signal distortion over a wide dynamic range. The balanced high level voltage switch then drives a virtual ground summing bus through $10 \mathrm{k} \Omega$ resistors. Also included is a design for a virtual ground summing amplifier.

The SSM-2402 is a monolithic dual audio switch that improves electrical performance and eases printed circuit board layout design. The design reduces manufacturing cost when compared with discrete JFET designs of similar performance. Electrical performance is measurably superior to CMOS switch designs, and will be less prone to failure from electrical static discharge.

FIGURE 1: Audio Mixer Channel Mute (On/Off) Circuit, a Balanced Design with High Level Bus Switching

The "T" switch configuration of the SSM-2402 provides excellent ON:OFF isolation. The design shown further improves the ON-OFF isolation and left/right channel crosstalk figures by maintaining the common-mode rejection ratio of a fully balanced design. The switch features a 7 ms ramped turn-on and 4 ms ramped turn-off, and guaranteed break-before-make switching sequence for transient-free audio switching. The system performance is improved for large audio consoles that have multiple switches in the audio signal path.
The switch control ports are easily interfaced to conventional $5 \mathrm{~V}_{D C}$ TTL or CMOS digital control circuits, further simplifying the control circuit design. Furthermore, product reliability and serviceability are improved by the simplified design. The application shown uses an elementary control circuit to functionally illustrate control voltage requirements. Customized logic gate control schemes or computer-controlled designs can easily be implemented.

The application circuit design employs dual audio switches driven by U_{3}, U_{4}, U_{5} and U_{6} inverting amplifiers. Their gain is controlled by two dual voltage controlled amplifier (VCA) elements U_{1} and U_{2}. A simplified signal path is shown for application clarity. For additional design information of the SSM-2122 dual VCA, consult the data sheet.

The design shown in Figure 1 is signal phase noninverting, and incorporates a minimum number of components to minimize noise. The input signal source should be balanced to maximize separation and crosstalk isolation. PCB layout should also utilize equal inductance in each side of the signal path wiring, and include equal stray capacitance to ground and other signal paths to obtain maximum performance. The SSM-2122 VCA provides good gain tracking of the two audio channels, while maintaining accuracy in the balanced signal path.
U_{11} and U_{12} are utilized as high level switches so that other post-switching functions can be employed. A nominal drive level of OdBu balanced (-6 dBu unbalanced) is applied to the switch. This level is arbitrary, but will satisfy most signal-tonoise and headroom compromises. The output of amplifiers U_{3}, U_{4}, U_{5}, and U_{6} are AC coupled prior to the switches to further minimize the switching transients caused by active component offset voltages. The balanced virtual ground mixing buses are current driven by R_{s} of $10 \mathrm{k} \Omega$. This value can affect overall system performance, and should be modified to suit the size of the mixing bus system. A greater number of input mixing channels will warrant lower bus drive current. Although the individual values of R_{S}^{\prime} and R_{F} can be altered, their values must be the same for a summing amplifier voltage gain of one (1).

TABLE 1: Circuit Performance Specifications

Max Input Level	$+30 \mathrm{dBu}$
Input Impedence, Balanced	$75 \mathrm{k} \Omega$
Common-Mode Rejection (20Hz to 20kHz)	>70dB
Common-Mode Voltage Limit	$\pm 12 \mathrm{~V}$ Peak
Max Output Level	$+30 \mathrm{dBu}$
Output Voltage Slew Rate	$12 \mathrm{~V} / \mu \mathrm{s}$
Frequency Response ($\pm 0.05 \mathrm{dBu}$)	20 Hz to 20 kHz
Frequency Response ($\pm 0.5 \mathrm{dBu}$)	10 Hz to 50 kHz
THD + Noise (20 Hz to 20 kHz ; +8 dBu)	0.005\%
THD + Noise (20 Hz to $20 \mathrm{kHz},+24 \mathrm{dBu}$)	0.03\%
IMD (SMPTE 60 Hz \& $4 \mathrm{kHz}, 4: 1,+24 \mathrm{dBu})$	0.02\%
ON/MUTE Isolation (20 Hz to 20 kHz)	$>85 \mathrm{~dB}$
S/N Ratio @ OdB Gain	135dB

The active switches' ON resistances are typically 60Ω and are well matched. One should use 1% or better tolerance series resistor R_{S} ($10 \mathrm{k} \Omega$) to minimize imbalance in the signal path. In the OFF state, the "T" configuration of the switch virtually eliminates leakage of the input source signal into the mixing bus(es). Greater than 100dB mute isolation at 1 kHz can be obtained with prudent printed circuit board design since the SSM-2402 control inputs and switch terminals are separated by ground guards.

The use of $\pm 18 \mathrm{~V}_{\mathrm{DC}}$ power supplies allows a +30 dBu (balanced) clipping level. All integrated circuit components mentioned will operate reliably at $\pm 18 \mathrm{~V}_{\mathrm{OC}}$, and noise contribution will be indiscernible, even in large mixing systems. The balanced input to balanced output frequency response is typically greater than 10 Hz to 50 kHz , within 1dB. Total harmonic distortion plus noise will measure less than 0.01%, from 20 Hz to 20 kHz at +30 dBu , while SMPTE intermodulation distortion less than 0.02% under the same measurement conditions.

A CONSTANT POWER "PAN" CONTROL CIRCUIT FOR MICROPHONE AUDIO MIXING

APPLICATION NOTE 123

The SSM-2134 permits the design of a constant power, tran-sient-free "PAN" control circuit suitable for installation in the highest performance audio mixing consoles. The design incorporates unique and vital features. The PAN IN/OUT switch does not introduce transient type noise or interruptions in the audio when activated or deactivited, and when panning, an accurate constant power output is maintained between the sum of the two channels. The design allows "punching-in" and "punching-out" of the PAN circuit while mixing down or on-the-air, without transient clicks or holes in the mix.

The design utilizes conventional parts, e.g., a single SPST switch and a linear $10 \mathrm{k} \Omega$ potentiometer. U_{1} (SSM-2134) is used as a unity gain, inverting buffer with an input impedance of $37.4 \mathrm{k} \Omega$. The input source could be a VCA element or audio direct from the fader control. The values shown will aliow a VCA, for example, the SSM-2013, to be used with only minor additions. The overall application circuit is noninverting from input to output.
The $15 \mathrm{k} \Omega$ series input resistors R_{s}, plus the inverting input $15 \mathrm{k} \Omega \mathrm{R}_{1}$ in parallel with $5 \mathrm{k} \Omega(1 / 2$ of $10 \mathrm{k} \Omega$, with the PAN control
in the center) forms an attenuator that has a 14 dB loss. Fotating the PAN control in either direction decreases the attenuation to -11 dB for one channel and maximum attenuation for the other.

$$
\frac{1}{R_{L}}=\frac{1}{R_{I}}+\frac{1}{5 \mathrm{k} \Omega}, \quad R_{L}=3.75 \mathrm{k} \Omega
$$

Attenuation is calculated as:
$\mathrm{d} B_{\text {LOSS }}=20 \log \frac{R_{L}}{R_{L}+R_{S}}=20 \log \frac{3.75 \mathrm{k} \Omega}{3.75 \mathrm{k} \Omega+15 \mathrm{k} \Omega}=-14 \mathrm{~dB}$
Amplifier $\left(U_{2} \& U_{3}\right)$ gain is:
$\mathrm{dB}_{\mathrm{GAIN}}=20 \log \frac{R_{F}}{R_{I}}=20 \log \frac{75 \mathrm{k} \Omega}{15 \mathrm{k} \Omega}=+14 \mathrm{~dB}$
The frequency response is typically 10 Hz to 50 kHz , within 0.5 dB . Total harmonic distortion plus noise will measure less than 0.007% from 20 Hz to 20 kHz , and SMPTE intermodulation distortion less than 0.01%. The amplifier clipping level is +24 dBu with $\pm 18 \mathrm{~V}_{\mathrm{DC}}$ power supply rails. Headroom is nominally 30 dB , and 27 dB at full PAN for the operating channel.

FIGURE 1: Constant Power Type Control Circuit with Transient Free IN/OUT Switching

TABLE 1: Circuit Performance Specifications

PAN Range, $L \rightarrow C \rightarrow R(L$ Out $) \quad+3$	$+3 \mathrm{~dB}<0 \mathrm{~dB} \rightarrow-80 \mathrm{~dB}$
PAN Range, $R+C \rightarrow L(R$ Out $) \quad+3$	$+3 \mathrm{~dB} \leftarrow 0 \mathrm{~dB} \rightarrow-80 \mathrm{~dB}$
Max Input Level	+24dBu
Input Impedance, Balanced	$37.4 \mathrm{k} \Omega$
Max Output Level ($>600 \Omega \pm 18 \mathrm{~V}_{\mathrm{DC}} \mathrm{PS}$)	S) $\quad+24 \mathrm{dBu}$
Headroom	30dB
Output Voltage Slew Rate	$6 \mathrm{~V} / \mathrm{\mu s}$
Frequency Response ($\pm 0.05 \mathrm{~dB}$)	20 Hz to 20 kHz
Frequency Response ($\pm 0.5 \mathrm{~dB}$)	10 Hz to 50 kHz
THD + Noise (20 Hz to $20 \mathrm{kHz} \mathrm{z}_{1}+8 \mathrm{dBu}$)	0.005\%
THD + Noise (20 Hz to $20 \mathrm{kHz},+24 \mathrm{dBu}$)) 0.03\%
IMD (SMPTE $60 \mathrm{~Hz} \mathrm{\&} \mathrm{4kHz}, \mathrm{4:1}, \mathrm{+24dBu)}$	Bu) 0.02%
S/N Ratio	130dB

Precision Monolithics Inc.

APPLICATION NOTE 124

Although the digital compact disk is rapidly supplanting the vinyl disk as the popular media method for professional and consumer audio entertainment, the electro-mechanical recording and reproduction of audio signals has many more years of life. The group of phon preamplifier application designs below will make the future years with vinyl more productive and pleasant. The applications employ solid engineering concepts, and dismiss "golden ear" discussions.

One design includes an input scheme for both moving coil (MC) and moving magnet (MM) - or variable reluctance - transducers. All designs employ extremely low noise circuit topologies, high accuracy active and passive RIAA (Recording Industries Association of America) equalization with selectable old RIAA or RIAA/IEC (International Electro-Technical Commission) curves. The applications incorporate both consumer and balanced output circuit configurations.

FIGURE 1: High Accuracy RIAA/IEC MC or MM Phono Preamplifier

FIGURE 2: Passive (Multi-Filter) RIAAIIEC Equalized Phono Preamplifier

A HIGH ACCURACY DESIGN

In the High Accuracy RIAA/IEC Phono Preamplifier shown in Figure 1, both MC and MM transducer input configurations are presented. Both utilize the PMI SSM-2015 differential amplifier and take advantage of the high common-mode rejection it provides. The overall circuit structure does not incorporate any design compromises. It provides the lowest possible noise, adjustable MM input loading, highest accuracy RIAA fitering, and is completely devoid of transient and frequency dependent gain errors. The wide bandwidth stages minimize in-band phase shift, and provide exceptional phase and frequency response accuracy. This allows the RIAA/IEC filter to render the exact reciprocal of the recorded phase and frequency characteristics.

Referring to Figure 1, the MC input circuit has input loading $\left(R_{L}\right)$ set at 100 2 . (Note: some MC transducers require 10Ω loading for maximum reproduction accuracy. For these, replace R_{L} with a 10Ω metal film resistor.) The input circuit gain is 44 dB , and provides a -20 dBu signal level at point A. 44 dB gain should be adequate for most MC cartridges available. If U_{1} gain requires adjusting, use the equation:
$G_{d B}=20 \log \left(3.5+\frac{20 \times 10^{3}}{R_{G}}\right)$
R_{B} sets the U_{1} bias value and contributes to symmetrical amplifier slewing. The RIAA filter stage that follows U, stage(s) all but eliminates noise produced by the input amplifier.

FIGURE 3: Passive RIAA/IEC Equalized Phono Preamplifier

The next stage contains the RIAA-RIAA/IEC equalization filter and is built around U_{2}, the SSM-2134 operational amplifier, and is an active feedback type filter. The overall gain of this circuit at $1,000 \mathrm{~Hz}$ is -2.5 dB . RIAA equalization requires a gain of 19.3 dB at 20 Hz , and attenuation of 19.6 dB at $20 ; 000 \mathrm{~Hz}$. The open-loop gain of U_{2} is greater than 100 dB at 20 Hz , and 60 dB at $20,000 \mathrm{~Hz}$, ensuring exceptional equalization accuracy.
Three filters make up the RIAA reproduction curve. The time constants are: $75 \mu \mathrm{~s}, 318 \mu \mathrm{~s}$, and $3180 \mu \mathrm{~s}$, and a fourth time constant in the RIAA/IEC curve is $7960 \mu \mathrm{~s}$. The IEC filter was introduced to minimize warp and infrasonic signal interference while maintaining flat frequency response down to 40 Hz .

- The 75μ s filter is formed by resistors $R_{1}(9.76 \mathrm{k} \Omega)$ and R_{2} ($31.8 \mathrm{k} \Omega$) in parallel with capacitor $\mathrm{C}_{2}(0.01 \mu \mathrm{~F})$.
- The $318 \mu \mathrm{~s}$ pre-emphasis filter is formed by $R_{2}(31.8 \mathrm{k} \Omega)$ and $C_{2}(0.01 \mu \mathrm{~F})$.
- The 3180μ s filter is formed by $R_{3}(318 \mathrm{k} \Omega)$ and $C_{3}(0.01 \mu F)$.
- The fourth pole, IEC $7960 \mu \mathrm{~s}$, a high pass filter is formed by $R_{4}(31.6 \mathrm{k} \Omega)$ and $\mathrm{C}_{4}(0.22 \mu \mathrm{~F})$, and provides 3dB attenuation at 20 Hz rolling off at $-6 \mathrm{~dB} / o c t a v e$ thereafter.

Table 1 contains the complete RIAA and RIAA/IEC reproduction equalization characteristics. RIAA/IEC switching allows selection of either reproduction response curves. For the "audio purist," C_{5} can be eliminated for a direct coupled design, thus reducing envelope and group delay distortions. All amplifier feedback circuits are direct coupled, and are referenced to circuit ground. The closed-loop gain is kept low to minimize input offset voltage, therefore only very small DC voltages can be expected at the output of the directly coupled version.

The high level amplifier, U_{5}, provides +12.7 dB gain and feeds the unbalanced Consumer Output jack, with a nominal -10 dBu level. U_{5} is followed by balanced output buffer amplifier. The nominal output level is continuously adjustable from 0.0 dBm to +10 dBm at the baianced output terminals. The output source impedance is 75Ω, and will drive 600Ω loads to a maximum +30 dBm clip point level. Table 2 shows circuit performance specifications.

TABLE 1: RIAAIEC and RIAA Playback Characteristics

Frequency (Hz)	RIAA /IEC Relative Level (dB)	RIAA Relative Leve (dB)
2.0	-0.2	
2.5	+1.8	\cdots
3.15	+3.7	
4.0	+5.7	
5.0	+7.6	
6.3	+9.4	
8.0	+11.2	
10.0	+12.8	
12.5	+14.1	
16.0	+15.4	
20.0	+16.3	+19.3
25.0	+16.8	+19.0
31.5	+17.0	+18.5
40.0	+16.8	+17.8
50.0	+16.3	+16.9
63.0	+15.4	+15.8
80.0	+14.2	+14.5
100	+12.9	+13.1
125	+11.5	+11.6
160	+9.7	+9.8
200	+8.2	+8.2
250	+6.7	+6.7
315	+5.2	+5.2
400	+3.8	- +3.8
500	+2.6	+2.6
630	+0.8	+0.8
-1,000	0.0	0.0
1,250	-0.8	-0.7
1,600	-1.6	-1.6
2,000	-2.6	-2.6
2,500	-3.7	-3.7
3,150	-5.0	-5.0
4,000	-6.6	-6.6
5,000	-8.2	-8.2
6,300	-10.0	-10.0
8,000	-11.9	-11.9
10,000	-13.7	-13.7
12,500	-15.6	-15.6
16,000	-17.7	-17.7
20,000	-19.6	-19.6

TABLE 2: High Accuracy Circuit Performance Specifications

MC Nominal Input Level	$-64 \mathrm{dBu}(0.5 \mathrm{mV})$
MC Input Impedance	100Ω
MM Nominal Input Level	$-48 \mathrm{dBu}(3.0 \mathrm{mV})$
MM Input Impedance, Resistive	$69 \mathrm{k} \Omega$ or $47 \mathrm{k} \Omega$
MM Input Impedance, Capacitive	50 pF to 350 pF
Common-Mode Rejection (20Hz to 20kHz)	$>50 \mathrm{~dB}$
Common-Mode Voltage Limit	$\pm 10 \mathrm{~V}$ Peak
Nominal Output Level, Balanced	$+8 \mathrm{dBu} / \mathrm{dBm}$
Max Output Level, Balanced	$+30 \mathrm{dBu} / \mathrm{dBm}$
Output Impedance, Balanced	70.
Gain Control Range, Balanced	0.0 dBu to $10 \mathrm{dBu} / \mathrm{dBm}$
Nominal Output Level, Unbalanced	-10 dBu
Max Output Level, Unbalanced	+24 dBu
Output Impedance, Unbalanced	$1,000 \Omega$
Output Voltage Slew Rate	$>6 \mathrm{~V} / \mu \mathrm{s}$
RIAA Reproduction Characteristics	
(20Hz to 20kHz)	$\pm 0.25 \mathrm{~dB}$

RIAA/IEC Reproduction Characteristic

$(2 \mathrm{~Hz}$ to 20 kHz$)$	$\pm 1.0 \mathrm{~dB}$
Wideband Frequency Response $(\pm 1.0 \mathrm{~dB})$	0.0 Hz to 70 kHz
Signal-to-Noise Ratio (20Hz to 20 kHz$)$	$>90 \mathrm{~dB}$
THD + Noise	
$(20 \mathrm{~Hz}$ to $20 \mathrm{kHz}+8 \mathrm{dBu}$, Any Output)	0.01%
IMD (SMPTE $60 \mathrm{~Hz} \& 4 \mathrm{kHz}, 4: 1)$	0.02%

A PASSIVE MULTI-FILTER DESIGN

The Passive Split Multi-Filter R|AA/IEC Preamplifier design, shown in Figure 2, is intended for moving magnet (MM) input phono transducers. The design has an extremely low noise circuit topology, high accuracy passive RIAA/IEC equalization filters, and both unbalanced consumer and balanced output circuits. The input configuration utilizes the SSM-2015. It provides the lowest possible noise, adjustable resistive and capacitive input loading, and high accuracy passive RIAA filtering totally devoid of transient and frequency dependent gain errors:
Referring to Figure 2, the following two stages contain the RIAARIAA/IEC passive equalization filters. All high pass and low pass filters are passive. The signal is amplified by U_{2} and U_{3} SSM-2134 op amps. The overall gain of the circuit at $1,000 \mathrm{~Hz}$ is 38 dB . RIAA equalization requires a gain of 19.3 dB at 20 Hz , and attenuation of 19.6 dB at $20,000 \mathrm{~Hz}$. Open-loop gain of U_{2} and U_{3} is greater than 100 dB at 20 Hz , and 60 dB at $20,000 \mathrm{~Hz}$. Closed-loop gain of U_{1} is 22.5 dB , and U_{2}, U_{3} is 16.6 dB , ensuring an extensive gain margin for phase accuracy. Refer to Table 3 for complete circuit specifications.

TABLE 3: Passive Multi-Filter Circuit Performance Specifications

MM Nominal Input Level	-48 dBu (3.0 mV)
MM Input Impedance, Resistive	$69 \mathrm{k} \Omega$ or $47 \mathrm{k} \Omega$
MM Input Impedance, Capacitive	50pF to 350pF
Common-Mode Rejection (20Hz to 20 kHz)	$>50 \mathrm{~dB}$
Common-Mode Voltage Limit	$\pm 10 \mathrm{~V}$ Peak
Max Output Level, Balanced	+30dBu/dBm
Nominal Output Level, Balanced	$+8 \mathrm{dBu} / \mathrm{dBm}$
Output Impedance, Balanced	70S
Gain Control Range, Balanced 0.	to $10 \mathrm{dBu} / \mathrm{dBm}$
Nominal Output Level, Unbalanced	-10dBá
Max Output Level, Unbalanced	24 dBm
Output Impedance, Unbalanced	1,000
Output Voltage Slew Rate	$>6 \mathrm{~V} / \mu \mathrm{s}$
RIAA Reproduction Characteristic (20 Hz to 20 kHz)	$\pm 0.25 \mathrm{~dB}$
RIAA/IEC Reproduction Characteristic (2 Hz to 20 kHz)	$\pm 0.5 \mathrm{~dB}$
Wideband Frequency Response ($\pm 1.0 \mathrm{~dB}$)	0.0 Hz to 70 kHz
Signal-to-Noise Ratio (20 Hz to 20 kHz)	$>90 \mathrm{~dB}$
THD + Noise (20 Hz to $20 \mathrm{kHz}+8 \mathrm{dBu}$, Any Output)	0.01\%
IMD (SMPTE 60 Hz \& $4 \mathrm{kHz}, 4: 1$)	0.02\%

AN ECONOMICAL APPROACH

An Uncomplicated Passive RIAA/EC Preamplifier is shown in Figure 3. It is a low cost, practical design for a passively equalized RIAA/IEC phono preamplifier. The design shown is for moving magnet (MM) input. It also is an extremely low noise input circuit design, and includes both unbalanced consumer and balanced output circuit configurations. The input circuit also utilizes the SSM-2015, and provides adjustable resistive and capacitive input loading. Wide bandwidth stages minimize inband phase shift, and provide exceptional phase and frequency response accuracy. Table 4 details circuit performance data.

SUMMARY

For a phono transducer cartridge to deliver the performance as intended, it should be loaded with proper resistance and capacitance. The MM input circuits have adjustable transducer loading. Most transducers currently available will be accommodated with resistive loading of $69 \mathrm{k} \Omega$ or $47 \mathrm{k} \Omega$, and capacitive loading of a few pF (input wiring dependent) to 350 pF , in 50 pF steps.
If greater input common-mode noise rejection is required, it can be obtained in all input designs by increasing the value of the 100Ω resistor and $0.1 \mu \mathrm{~F}$ capacitor connected between the input RCA jack shield connection and the main circuit ground point. The values shown satisfy most requirements for 1 meter cables supplied with the newer tone arms.

TABLE 4: Uncomplicated Passive Circuit Performance Specifications

MM Nominal Input Level	$-48 \mathrm{dBu}(3.0 \mathrm{mV})$
MM Input Impedance, Resistive	$69 \mathrm{k} \Omega$ or $47 \mathrm{k} \Omega$
MM Input Impedance, Capacitive	50 pF to 350pF
Common-Mode Rejection (20Hz to 20kHz)	$\mathrm{Hz}) \quad>50 \mathrm{~dB}$
Commom-Mode Voltage Limit	$\pm 10 \mathrm{~V}$ Peak
Max Output Level, Balanced	+30dBu/dBm
Nominal Output Level, Balanced	$+8 \mathrm{dBu} / \mathrm{dBm}$
Output Impedance, Balanced	70Ω
Gain Control Range, Balanced 0.0	0.0 dBu to $10 \mathrm{dBu} / \mathrm{dBm}$
Nominal Output Level, Unbalanced	$-10 \mathrm{dBu}$
Max Output Level, Unbalanced	24 dBu
Output Impedance, Unbalanced	1,000 ${ }^{\text {d }}$
Output Voltage Slew Rate	$>6 \mathrm{~V} / \mu \mathrm{s}$
RIAA Reproduction Characteristic (20 Hz to 20 kHz)	$\pm 0.5 \mathrm{~dB}$
RIAA/IEC Reproduction Characteristic (2 Hz to 20 kHz)	$\pm 1.0 \mathrm{~dB}$
Wideband Frequency Response ($\pm 1.0 \mathrm{~dB}$)	B) 0.0 Hz to 70 kHz
Signal-to-Noise Ratio (20 Hz to 20 kHz)	$>90 \mathrm{~dB}$
THD + Noise (20 Hz to $20 \mathrm{kHz},+8 \mathrm{dBu}$, Any Output)	0.01\%
IMD (SMPTE 60Hz \& 4kHz, 4:1)	0.02\%

All circuits described are signal noninverting, and constructed with bipolar IC amplifiers for lowest noise. They are compensated for widest bandwidth and circuit stability.
To achieve optimum trouble-free performance, a few construction and manufacturing tips should be observed. For grounding to be truly effective, all grounded components must return to a single point. This technique is effective in minimizing ground current loops that can cause excessive noise, signal cross-talk, AC power line noise, and circuit instability, and permit external noise spikes to enter. The ground center should be as close to the input amplifier (U_{1}) as possible. All grounded components of $\mathrm{U}_{2}, \mathrm{U}_{3}, \mathrm{U}_{4}, \mathrm{U}_{5}$, the output jack grounds, and the power supply ground lead should be tied to the same U_{1} ground point.
As long as the power supply leads are kept short, and adequately filtered and bypassed with polyester film capacitor at the regulators, there is no need for individual decoupling capacitors at U_{2}, U_{3}, U_{4}, and U_{5}. The power supply voltages should be regulated for $\pm 18 \mathrm{~V}_{\mathrm{DC}}$.
All signal filter components should be of the highest quality, i.e., metalized polypropylene or polystyrene film, 1% tolerance capacitors (except for $\mathrm{C}_{5}, 5 \%$ tolerance is OK) and metal film resistors, 1% or better tolerance.

Precision Monolithics Inc.

APPLICATION NOTE 125

In this application, the SSM-2120 Dynamic Range Processor and SSM-2134 op amp are utilized in a dual-channel dynamic noise reduction circuit, where the input signal level and threshold control determine the corner frequency of a low-pass filter.

The SSM-2120 contains two class A VCAs (Voltage Controlled Amplifiers) that are used as the filter's control element, and two wide dynamic range full-wave rectifiers with control amplifiers. The VCA section or variable resistor is a current device con-

FIGURE 1: Two-Channel Dynamic Filter Noise Reduction System
trolled by the $+\mathrm{V}_{\mathrm{c}}$ voltage control ports. The VCAs are employed as variable resistor elements in a single pole low pass filter operating in a virtual ground configuration. The level detecting rectifier is a full-wave averaging type with more than 100dB dynamic range, followed by a LOG amp converter. The part also contains two operational amplifiers with PNP output transistors used to drive the $+V_{c}$ ports.
U_{1} and U_{2} (SSM-2134) are input amplifiers and source-load isolating buffers. They provide a choice of noninverting, inverting, or balanced inputs. Unbalanced loading is $10 \mathrm{k} \Omega$ and balanced loading is $20 \mathrm{k} \Omega . U_{1}$ and U_{2} gain is set at 0 dB , with a -10 dBu nominal input signal recommended using $\pm 18 \mathrm{~V}_{\mathrm{DC}}$ power supply rails. This configuration will provide an overall circuit headroom of more than 30 dB . In less critical applications, the feedthrough trim controls and $220 \mathrm{k} \Omega$ resistors can be eliminated.

DETAIL CIRCUIT DESCRIPTION FOR U_{7} (SSM-2120), AND $U_{3} \& U_{4}$

The rectifier circuit is configured to provide a negative control voltage referenced to ground. The LOG amplifier's bias is set by the $1.5 \mathrm{M} \Omega$ resistor. The $1.5 \mathrm{M} \Omega$ resistor also provides the discharge path for the $1 \mu \mathrm{~F}$ rectifier averaging capacitor. The discharge time constant controls the low-pass filter's action toward a lower corner frequency. The LOG amplifier provides a constant current charging for the $1 \mu \mathrm{~F}$ averaging capacitor. It results in an attack (return to flat response) time constant $T_{C 0}$ of approximately 6 ms , and a low-pass filter activation $T_{C_{1}}$ of 350 ms .
The internal op amp of U_{7} has the gain V_{G} set at 47. The potentiometer at the inverting input provides the adjustable threshold to activate the filter. The threshold adjustment ranges from -40 dBu to 0 dBu of input signal level. The output from the op amp drive transistor supplies only a negative control voltage to the VCA $\left(+V_{c}\right)$ control port(s). For example, with the filter threshold control adjusted to 0 dB and a -10 dBu signal applied to the input, $f_{c 1}$ is $\approx 4 \mathrm{kHz}$; or with -20 dBu applied, $f_{C_{2}}$ is $\omega 1.2 \mathrm{kHz}$, both rolling off at $6 \mathrm{~dB} /$ Octave. With the input signal level exceeding the filter threshold setting (OV VCA control voltage present), the overall circuit frequency response is 20 Hz to 16 kHz , at $\pm 1 \mathrm{~dB}$.
The VCA audio input current is limited by the $37.4 \mathrm{k} \Omega$ resistor. The VCAs operate as current devices whose outputs feed the
virtual ground of an amplifier loop. The feedback capacitor around the amplifier loop sets up a single-pole low-pass filter. The SSM-2120 $\left(U_{7}\right)$ inverts the signal current, therefore U_{5} and U_{6} are required to invert the output signal that is summed at the input(s) of U_{7}.
The design is an effective single-ended noise reduction circuit with low distortion and noise. When utilized on a noisy signal source, it will attenuate high frequency noise with inconspicuous operation.

TABLE 1: Circuit Performance Specifications

Nominal Input Voltage (-10 dBu Out)	-10 dBu
Headroom (-10dBu Out)	+30 dBu
Input Voltage Range	-20 dBu to +10 dBu
Input Type/lmpedance, Balanced	$20 \mathrm{k} \Omega$
Input Type/limpedance, Unbalanced	10 ks 8
Dynamic Noise Reduction Class	Dynamic Low-Pass
Filter Activate Time Constant (6dB)	350 ms
Threshold Range (Level)	-40 dBu to 0dBu
Filter Deactivate Time Constant	6 ms

Signal Rectifier Type	Full Wave Averaging
Modulation Feedthrough, Trimmed	-100 dB
Frequency Response $(20 \mathrm{~Hz}$ to 16 kHz$)$	$\pm 1 \mathrm{~dB}$
Filter Type, Low-Pass	Single Pole, $6 \mathrm{~dB} / \mathrm{Oct}$
Input 10dB Below Threshold Setting	$\mathrm{f}_{\mathrm{C} 1}=3,800 \mathrm{~Hz}$
Input 20dB Below Threshold Setting	$\mathrm{f}_{\mathrm{C} 2}=1,400 \mathrm{~Hz}$

Dynamic Range	
@ OdB Gain (Ref. +22dBu)	106dB
THD + Noise (20 Hz to 20 kHz)	0.02\%
IMD (SMPTE 60 Hz \& $4 \mathrm{kHz}, 4: 1$)	0.05\%
Output Voltage ($2 \mathrm{k} \Omega$ Load)	+22dBu
Output Type	Unbalanced
Power Supply	$\pm 18 \mathrm{~V}_{\text {DC }}$ Regulated

Specciactist

APPLICATION NOTE 127

This application note describes a dual chaninel unbalanced analog audio mute switch, for use in audio console mute circuits. The SSM-2402 dual audio switch, when used in the virtual ground configuration, truly enhances any audio mute design. The application, as shown in Figure 1, incorporates unbalanced stereo input buffers, dual stereo electronic virtual ground switches (with simplified control circuit); and virtual ground summing amplifiers.

THE AUDIO SWITCH AS IMPLEMENTED

The design utilizes the SSM-2402 $\left(U_{1}\right.$ and $\left.U_{2}\right)$ dual audio switch in a virtual ground switching configuration. This method of operation improves linearity over a wide dynamic range: The SSM-2402 utilizes JFET switching, with internal wide bandwidth integrated amplifiers applied in a unique configuration. The result is low transient intermodulation distortion, low THD, and low IMD, while essentially eliminating all audio switching

FIGURE 1: Audio Mixer Channel Mute (On/Off) Circuit (Unbalanced Design with Virtual Ground Switching)
transients. The SSM-2402 switch closed (ON) resistance is typically 60Ω in series with $R_{\theta}(10 \mathrm{k} \Omega)$. As shown in this mixing system, the tolerance of the 60Ω contributes to less channel imbalance than the 1% resistor tolerance, thus eliminating the need for level trim adjustments.
The SSM-2402 employs a "T" switching configuration that yields superior ON-OFF signal isolation. In the OFF: state, the " T " configuration of the SSM-2402 virtually eliminates leakage of the input signal (down more than 100 dB at 1 kHz with guard pins 3, 5, 10 and 12 grounded) onto the mixing bus(es), The part also features a 7 ms ramped turn ON and 4 ms ramped turn OFF, for transient free audio switching even with signal applied. The switch also operates with a break-before-make switching sequence. These properties are significant when many remotely controlled electronic switches are connected in series and controlled by a single device, as in large audio systems managed by an automation computer.

CONTROL INTERFACE

In this application note, the bus assignment (selection) switches are shown functionally for clarity. The control ports of the SSM2402 can easily be interfaced to conventional 5V TTL or CMOS logic control circuits. $+5 \mathrm{~V}_{D C}$ (logic high) closes the switch (ON), and $O V_{D C}$ (logic low) opens the switch (OFF). The common interface levels improve the reliability and serviceability of any products it's designed into. Diverse logic gate control designs or computer controlled schemes can easily be implemented.

DRIVE REQUIREMENTS - THE INPUT CIRCUIT

The application employs two SSM-2402 dual audio switches in a four-bus configuration (two stereo buses) driven by $\mathrm{U}_{3}, \mathrm{U}_{4}$ and U_{5}, U_{6} bipolar amplifiers. The buffer amplifiers are signal inverting, with their gain set to $\operatorname{OdB}\left(A_{v}=1\right)$. The input amplifiers also serve as source signal level clippers that prevent the input signal from exceeding the input range of the switches, thus preventing the switches from passing a distorted signal when overdriven in the open (OFF) state. A nominal input drive level of -10 dBu is applied to the switch and will maximize the signal-to-noise ratio, and optimize headroom. The output of U_{3}, U_{4}, U_{5} and U_{6} are $A C$ coupled to further minimize the switching transient noise caused by signal path DC voltages from previous origins.
The virtual ground mixing buses are current driven by A_{B} ($10.0 \mathrm{k} \Omega$) resistors. Once again, this is a compromise value that can be changed to accommodate the extent of the mixing bus implemented. A greater number of input mixing channels will warrant a lower bus drive current. Although other values can be used, the resistance values of A_{B} and A_{F} should be the same.

As shown ($\pm 18 \mathrm{~V}_{\mathrm{DC}}$ power) R_{B} will apply approximately 1.7 mA peak current to the mixing bus. This is well within SSM-2402 switching capabilities, as well as the SSM-2134 drive capabilities. The signal current is low enough to keep return ground currents low enough to prevent crosstalk as a result of the mechanical wiring constraints. Returning ground currents independently to the noninverting input of the summing amplifier is advised.

THE OUTPUT SUMMING AMPLIFIER

The design utilizes the SSM-2134, the PMI version of the popular NE5534 bipolar operational amplifier. The circuit features a significant reduction in summing amplifier noise, a decrease in temperature and bus impedance effects on the static output voltage as a result of using a bipolar amplifier. This design also balances the input circuit reflected source impedance of the bipolar IC amplifier, alleviating the unity-gain instability and eliminating the unbalanced input topology for inverting summing designs that could cause output offset.
The SSM-2134 has a noise voltage of $2.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, thus the noise floor is reduced by 3 to 10 dB . Additionally, frequency and phase response performance have been improved. Only minimal compensation is required in the feedback loop of the SSM2134 to maintain unconditional stability. The slew rate remains greater than $10 \mathrm{~V} / \mu \mathrm{s}$, with bandwidth exceeding 50 kHz .

SUMMARY

The design application shown in Figure 1 is signal noninverting, and utilizes a minimum number of noise generating elements. The circuit configuration produces linear signal mixing at the virtual ground summing node ($e_{\mathrm{S}}=0 \mathrm{~V}_{\mathrm{AC}}$), therefore, no reflected interaction occurs between the input sources. The signal input to any output frequency response is typically 10 Hz to $50 \mathrm{kHz}, \pm 0.5 \mathrm{~dB}$. Total harmonic distortion plus noise will measure less than 0.01%, from 20 Hz to 20 kHz , SMPTE intermodulation distortion is less than 0.02%. With prudent printed circuit board design, a greater than 100 dB mute isolation @ 1 kHz can be obtained.

The application shown employs $\pm 18 \mathrm{~V}_{\mathrm{DC}}$ power supplies to produce a +24 dBu audio output clip level. All SSM components will operate with equal reliability at $\pm 20 \mathrm{~V}_{\mathrm{DC}}$, producing approximately a 1 dB increase in clip level. If the extra headroom is necessary, a $\pm 20 V_{D C}$ power supply voltage is encouraged. The noise increase will be indiscernible, even in large mixing systems.

Precision Monolithics Inc.

APPLICATION NOTE 128

This application applies the SSM-2120 as a dual-channel noise gate or adjustable threshold downward expander. A noise gate is a type of noise reduction system that fully attenuates a VCA when no audio signal is present. The SSM-2120 contains two class A VCAs (Voltage Controlled Amplifiers) and two wide
dynamic range full-wave rectifiers and control amplifiers. The VCA section is a current amplifier device whose gain is controlled by two gain ports that have dB / N scaling. The VCAs are employed as wide bandwidth amplifiers with the current inputs and outputs operating in a virtual ground configuration. The rec-

FIGURE 1: Two-Channel Noise Gate
tifiers are full-wave averaging type with 100 dB dynamic range, followed by LOG converters. The part also contains two operational amplifiers with PNP output transistors connected in a common collector configuration.

Two SSM-2134s are used as input amplifiers, U_{1} and U_{2}, to provide noninverting; inverting, or balanced inputs. Unbalanced loading is $10 \mathrm{k} \Omega$ and balanced loading $20 \mathrm{k} \Omega: U_{1}$, and U_{2} gain is set at 0 dB , and with a -10 dBu nominal input signal and $\pm 18 \mathrm{~V}_{\mathrm{DC}}$ power, will provide overall circuit headroom of 30 dB . The VCA(s) could be DC coupled, although in this application they are $A C$ coupled to reduce the dependence on trimming the side chain voltage modulation feedthrough. In critical applications the feedthrough trim controls and $220 \mathrm{k} \Omega$ resistors should be added.

The SSM-2120's internal rectifier produces a negative DC voltage referenced to ground. The LOG amplifier bias is set by the $1.5 \mathrm{M} \Omega$ resistor. The $1.5 \mathrm{M} \Omega$ resistor also provides the discharge current path for the $1 \mu \mathrm{~F}$ capacitor, that controls the gate's downward expansion time constant. The LOG amplifier provides a constant current capacitor charging value. It results in an attack (return OdB gain) time constant T_{C} of approximately 6 ms , and a downward expansion T_{c} of 350 ms .
The internal op amp gain A_{v} is set at 47 , with the inverting input also providing the reference voltage. The reference voltage range from the gate threshold control allows the gating to activate at any source signal level from -40 dBu to 0 dBu . The output from the op amp drive transistor supplies a negative control voltage to the VCA ($+\mathrm{V}_{\mathrm{c}}$) control port(s). The VCA(s) control ports have a sensitivity of $6 \mathrm{mV} / \mathrm{dB}$. As shown, the voltage divider provides a $2: 1$ downward expansion slope. Below the threshold level, the gain slope is $2 \mathrm{~dB}_{\mathrm{G}} / \mathrm{dB}_{\mathrm{IN}^{\prime}}$.
The VCAs are current output amplifiers that are designed to operate with virtual ground configurations such as U_{3} and U_{4}. The VCA input current is supplied by the $37.4 \mathrm{k} \Omega$ resistor and input voltage signal. The virtual ground amplifier feedback resistors are $37.4 \mathrm{k} \Omega$. With no VCA control voltage, the overall
circuit voltage gain is 1 (0dB). Other non-gating gains can be attained by changing the output amplifiers feedback resistor value. The VCA input resistor should remain as shown for maximizing the performance of the $\operatorname{VCA}(\mathrm{s})$.

TABLE 1: Circuit Performance Specifications

Nominal Input Voltage (-10dBu Out)	$-10 \mathrm{dBu}$
Headroom (-10 dBu Out)	+30dB
Input Type/Impedance, Balanced Unbalanced	$\begin{aligned} & 20 \mathrm{k} \Omega \\ & 10 \mathrm{k} \Omega \end{aligned}$
Downward Expander Class	Feedthrough
Threshold Sense Time Constant (6dB)	350 ms
Threshold Range (Level)	-40 dBu to 0 dBu
Gate Deactivate Time Constant	6 ms
Signal Rectifier Type	Full-Wave Averaging
Modulation Feedthrough, Trimmed	<-60dBV
Gain Reduction Ratio, Downward Expansion	1 to $2(-2 \mathrm{~dB} / \mathrm{dB})$
Frequency Response (20 Hz to 20 kHz)	$\pm 0.25 \mathrm{~dB}$
Dynamic Range	100 dB
THD + Noise (20 Hz to 20 kHz)	0.02\%
IMD (SMPTE 60Hz \& 4kHz, 4:1)	0.05\%
Output Voltage Slew Rate	$6 \mathrm{~V} / \mu \mathrm{s}$
Output Voltage (2kS Load)	$+22 \mathrm{dBu}$
Output Type	Unbalanced
Power Supply	$\pm 18 \mathrm{~V}_{\text {DC }}$ Regulated

Precision Monolithics lnc.

APPLICATION NOTE 129

When constructing an accurate sum and difference signal from stereo left and right sources, amplitude and phase (delay) errors can contribute substantial amounts of crosstalk in the reconstructed left and right audio channels. A minor idB difference, or 6° phase error, will result in only 25 dB stereo channel separation. The design presented has essentially no phase or group delay in the sum or difference outputs as measured over
the audio spectrum, 20 Hz to 20 kHz . This circuit utilizes matched (laser trimmed) resistor networks combined with high open-loop gain differential amplifiers to guarantee virtually no phase and amplitude error in the sum and difference channels.
Amplifiers U_{3} and U_{4} (SSM-2134) are utilized as input signal buffers that provide a low source impedance (0) to the $10 \mathrm{k} \Omega$ summing resistors that feed the virtual ground current summing

FIGURE 1: Precision Sum and Difference (Audio Matrix) Circuit
nodes of U_{1} and U_{2}. The overall gain of the buffer circuit is 0 dB . The buffer amplifiers, U_{3} and U_{4}, are compensated for a frequency response that extends to 100 kHz at +24 dBu . The buffers are configured as inverting amplifiers for lowest phase and group delay effects.
U_{1} and U_{2} (SSM-2015) are true differential input, high performance bipolar amplifiers. The current summing inputs have been employed for sum and difference operations. All bipolar and JFET op amps exhibit considerable propagation time differences between inverting and noninverting inputs, which result in phase and group delay errors. The SSM-2015 was selected because this device has practically equal propagation time between inverting and noninverting inputs (typically less than 10 ns differential). This important characteristic produces high accuracy $L+R$ and $L-R$ signals. Because U_{1} and U_{2} are ultrafow noise audio preamplifiers, they contribute little noise and distortion to output signals.
U_{5} (OP-215GP) is a dual JFET amplifier, and is utilized as a long time constant integrator, or DC servo amplifier. The noninverting input is referenced to ground ($O \mathrm{~V}_{\mathrm{OC}}$) and will hold the output terminals of U_{1} and U_{2} at $O V_{D C}$. Capacitor (AC) coupling is not recommended as it would allow formation of envelope and low frequency group delay distortion.

CONSTRUCTION REQUIREMENTS

All $10 \mathrm{k} \Omega$ resistors need to be matched within 0.05% of each other, but can be 5% in value tolerance. The $0.1 \mu \mathrm{~F}$ capacitor in the integrator circuit should be a metalized polyester film capacitor with 10% tolerance. The power supply rails are regulated at $\pm 18 \mathrm{~V}_{\mathrm{OC}}$.

TABLE 1: Circuit Performance Specifications

Frequency Response ($\pm 0.02 \mathrm{~dB}$)	20 Hz to 20 kHz
Dynamic Range (20kHz Bandwidth)	104 dB
THD + Noise (20Hz to 20kHz, +24dBu)	0.007%
IMD (SMPTE $60 \mathrm{~Hz} \& 4 \mathrm{kHz}, 4: 1,+24 \mathrm{dBu})$	0.015%
Slew Rate	$10 \mathrm{~V} / \mu \mathrm{s}$
Nominal Signal Level	-10 dBu
Maximum Output Voltage	+23.3 dBu or 11.3 V hms
(2k Load)	0.05%
Amplitude Accuracy	$<10 \mathrm{~ns}$
Differential Error	

APPLICATION NOTE 130

The two-band audio compressor amplifier shown in Figure 1 features separate and adjustable signal compression ratios and threshold levels. This design employs the SSM-2120 Dynamic Range Processor, and SSM-2134 low noise op amps.
The design features: an inverting or noninverting input buffer amplifier; high-pass and low-pass filters; and a voltage-controlled amplifier driven by a log-average level detector with a full-wave rectifier. Additionally, there are fully adjustable gain reduction controls, and adjustable compression threshold level controls. Signal-to-noise ratio exceeds 100dB, while the level detector allows the compressor to operate transparently throughout the audio spectrum without interaction between high and low bands.

The circuit includes a line level input (-10 dBu to 0 dBu nominal) buffer amplifier, with inverting or noninverting inputs that have $10 k \Omega$ input impedance. The buffer also limits step-function slewing voltages from entering the next stage and isolates the input source from the high-pass and low-pass filter stages.
Both high-pass and low-pass filters are of the single-pole type. This filter class is utilized to eliminate combing effects in the stop bands; and to compensate for compressor artifacts when the two bands are summed back together in the output amplifier stage. Such artifacts include the compressor's effect on the amplitude of each independent band, and the filter's effect on the summing influence has been taken into account in the design.

FIGURE 1: Two-Band Audio Compressor

Two continuously variable gain reduction controls ($R_{G R}$) in the VCA control circuit provide independent adjustment of compression gain slopes. The GAIN REDUCTION ratios are each adjustable from 2 to 25 for high-pass and low-pass bands. This range of adjustment provides mild compression to severe limiter/clipper action independently on each band. Thus the irritating "hole producing and pumping" character of single, wide-band compressor circuits can be reduced. The SSM-2120 provides a dynamic range of greater than 100 dB over the frequency range of 20 Hz to 20 kHz with typically less than 0.02% THD + noise, and $0.05 \% \mathrm{MDD}$.

The COMPRESSION THRESHOLD control $\left(R_{T}\right)$ allows the compressor to take effect from - 30dBu to +20 dBu input levels. The SSM-2120's log-average precision rectifier is configured as a feedback-type level detctor. The design produces consistent and precise compression profile of the input signal with no threshold level or compression drift over time and temperature.
The SSM-2120's full-wave log-averaging rectifier and control amplifier form an integrator and buffer circuit that isolates the low impedance VCA control port from the integrator timing circuit. This circuit senses the VCA output level and modifies its compression profile by feeding the averaged VCA signal plus the compression threshold control signal back into the VCA control ports. The control R_{B} is used to balance the threshold amplitude between the two bands to pre-establish the compressor dynamics.

The small signal averaging time for the $2 \mu \mathrm{~F}$ integration capacitor shown is 12 ms . The attack time to 3 dB of final value is about 6 ms and is almost independent of signal level increase for level changes in excess of +10 dB . The compression release rate is controlled by the $1.5 \mathrm{M} \Omega$ discharge resistor in the integrator circuit. The recovery time constant is nearly linear since the discharge resistor returns to the $-15 \mathrm{~V}_{\mathrm{DC}}$ rail, and the rectifier produces a positive control voltage.

TABLE 1: Circuit Performance Specifications

Input Voltage Range (Nóminal for OdBu Out)	-10 dBu to 0 dBu Rectifier Type
Compressor Amplifier Class	Averaging
Attack Time (+10dB or Greater Level Change)	Feedback
Recovery Rate	6 ms
Feedthrough, Trimmed	$1.67 \mathrm{~dB} / \mathrm{ms}$
Gain Reduction Range	-100 dB
Frequency Response (20Hz to 20kHz)	2 to 25
Dynamic Range @ 0dB Gain	0.2 dB
THD + Noise (20Hz to 20kHz)	100 dB
IMD (SMPTE 60Hz \& 4kHz, 4:1)	0.02%
Output Voltage Slew Rate	0.05%
Output Voltage (2ks Load)	$6 \mathrm{~V} / \mu \mathrm{s}$

Precision Monolithics Inc.

APPLICATION NOTE 131

The dual-channel voltage-controlled amplifier (VCA) level control circuit describes a useful application of the SSM-2122 dual VCA, SSM-2134 low noise op amp, and PMI's OP-215BP JFET/bipolar op amp. This circuit is very handy when extremely close gain matching of a stereo audio source is desired, such as in ON-AIR and production audio consoles.

The design features a balanced input buffer amplifier and VCA driven by a level shifting amplifier which is controlled by a single $10 \mathrm{k} \Omega$ linear potentiometer. Additionally, there are fully adjustable and independent gain limit and maximum attenuation trim controls. The VCA circuit has a nominal attenuation range greater than 95 dB and has input overdrive protection. The signal-to-noise ratio exceeds 100 dB with a gain of 10 dB , and headroom of 32 dB . The amplitude varies less than $\pm 0.1 \mathrm{~dB}$ over the frequency range 20 Hz to 20 kHz . Typical THD and IMD are less than 0.005% and 0.02%, respectively.

As shown, the circuit includes two line-level inputs designed for a -10 dBu input signal level. The SSM-2134 $\left(U_{2}\right.$ and $\left.U_{4}\right)$ input buffer amplifiers can be connected for balanced or unbalanced inputs with inverting or noninverting inputs. The input loading impedance is $10 \mathrm{k} \Omega$ unbalanced and $20 \mathrm{k} \Omega$ balanced. The input buffer amplifier also limits step function slewing voltages from entering following stages. Other input levels can be accommodated by adjusting the feedback resistor $R_{F 2}$. For example: for a nominal input level of $0 \mathrm{dBu}, \mathrm{R}_{\mathrm{F} 2}$ should be changed to $3.16 \mathrm{k} \Omega$, or for a nominal input level of $+10 \mathrm{dBu}, \mathrm{R}_{\mathrm{F} 2}$ changed to $1 \mathrm{k} \Omega$ to provide the optimal current drive to the VCA. C_{F} should also be changed to 68 pF and 220pF respectively for both U_{2} and U_{3}.
For other input levels, $\mathbf{R}_{\mathrm{F} 2}$ can be calculated:
$R_{F 2}=10 \times 10^{3} \times \operatorname{EXP}\left(\frac{10+d B u}{-20}\right)$

FIGURE 1: Two-Channel VCA Level Control

The SSM-2122 has a current-in and current-out structure. The input current is set by resistor R, and the virtual ground input of the SSM-2122. Similarly the transimpedance amplifier at the output converts the output current into a voltage. All devices in this design operate on $\pm 15 \mathrm{~V}$ DC power supply rails. The $37.4 \mathrm{k} \Omega$ VCA input and output resistors optimize its dynamic range and minimize distortion. The SSM-2122 is a monolithic device, so the VCA gains remain uniform over a wide change in ambient temperature.

The SSM-2122 has two gain control ports that have a sensitivity of $-6 \mathrm{mV} / \mathrm{dB}$. 0.0 volts at the gain control ports will yield OdB overall gain; +60 mV produces +10 dB gain and -0.513 V corresponds to a -85 dB attenuation. The feedthrough trim null controls $R_{F N}$ are not imperative for most applications. However, for very high performance requirements they will reduce attenuation control voltage feedthrough to less than $750 \mu \mathrm{~V}$. To adjust the null trim controls $R_{F N}$ inject a 100 Hz sinewave into the control port through a $1 \mathrm{k} \Omega$ resistor and a $100 \mu \mathrm{~F}, 10 \mathrm{~V}$ capacitor, and set the signal generator to $0.5 \mathrm{~V}_{\text {RMS }}$. The control ports of U_{6} are pins 3 and13. Adjust the level control $R_{c T L}$ (fader) for OdB gain, with the signal inputs shorted, then adjust $R_{F N}$ for minium 100 Hz signal at the outputs.
The output amplifier(s) U_{4} and U_{5} are virtual ground connected current-to-voltage converters. The $37.4 \mathrm{k} \Omega$ feedback resistors set the circuit voltage gain to 0 dB with zero volts applied to the VCA control ports. Variable resistor $R_{B A L}$ is used to balance the signal path gain of the two audio circuits. With the circuit gain set to OdB and a test signal applied to the inputs, $R_{B A L}$ is adjusted for equal output levels.
The VCA provides 10 dB of additional gain at maximum level setting (+60 mV at the VCA control ports). The THD is extremely low within the characteristic gain range of +10 dB to -20 dB .
The VCA control circuit is designed around U_{1}, the high input impedance OP-215 dual op amp. One half of U_{1} is used to develop the 5 V reference voltage for the level control element.

This is a fail-safe design - with no voltage applied or an open connection at terminal $V_{c t i}$ the gain will descend to -85 dB . Level control trimming is as follows: with the fader control set to minimum ($O \mathrm{~V}$), the trim control R_{-85} is adjusted for maximum attenuation of -85 dB or $-0.513 \mathrm{~V}_{\mathrm{DC}}$ at pin 1 of U_{1}. Then with the fader set to its maximum (5V), trim control R_{+10} is adjusted for maximum circuit gain of +10 dB or +60 mV . Since there is no interaction when adjusting R_{+10} for +10 dB gain, the setting for R_{-85} will remain unaffected. Other max-attenuation values can be used. R_{-85} has an attenuation range of $-45 \mathrm{~dB}(270 \mathrm{mV})$ to $-93 \mathrm{~dB}(560 \mathrm{mV})$.

TABLE 1: Circuit Performance Specifications

Input Voltage (Nominal for -10 dBu Out)	-10 dBu or $245 \mathrm{mV}_{\text {RMS }}$
Input Impedance, Unbalanced	$10 \mathrm{k} \Omega$
Imput Impedance, Balanced	20ks
Headroom (Nominal for -10dBu In \&Out)	ut) 32 dB
Feedthrough, Trimmed	$<750 \mu \mathrm{~V}$
Gain Control Range (Nominal)	+10 dB to -85 dB
Gain Control Voltage (+10 dB to -85dB)	$5 \mathrm{~V}_{\mathrm{DC}}$ to $0 \mathrm{~V}_{\mathrm{DC}}$
Frequency Response (20 Hz to 20 kHz)	$\pm 0.1 \mathrm{~dB}$
S/N Ratio @ 10dB Gain	100dB
THD + Noise (20 Hz to $20 \mathrm{kHz}+22 \mathrm{dBu}$)	0.005\%
IMD (SMPTE 60Hz \& 4kHz, 4:1, +22dBu)	u) 0.02%
Output Voltage Slew Rate	6V/ $/ \mathrm{s}$
Output Voltage ($1 \mathrm{k} \Omega$ Load)	+22 dBu or $10 \mathrm{~V}_{\text {RMS }}$
Output Impedance	<108

Precision Monolithics Inc.

APPLICATION NOTE 133

Wireless audio systems are finding increasing use in live performances, as well as in communications equipment where mobility is required. Designing such systems present a difficult
challenge: how to maintain adequate audio performance in view of power supply and current consumption limitations. To reduce transmission noise, the audio signal is usually compressed at

FIGURE 1: Compressor-Limiter Circuit for Transmitter
the transmitter and expanded at the receiver by using a telecommunications industry-standard compandor $I C_{\text {, }}$, which has marginal audio performance as measured by professional standards. This application note describes a companding system utilizing the SSM-2120 Dynamic Range Processor which permits considerable improvement over other techniques in terms of noise, distortion, feedthrough, and other key audio criteria.

Transmitters are battery powered, and hence pose the most severe constraints on supply voltages and current consumption. Receivers are often AC powered, so bipolar supplies are more easily accommodated. Since the SSM- 2120 requires split supplies, a voltage doubler circuit is necessary for the transmitter. In some cases, this may be considered unfeasible. In this event, however, the SSM-2120 is still very useful in the receiver expander circuit to complement any compressed signal, and improve overall system performance. As a result, the compressor and expander sections of this application can be considered independent.

THE TRANSMITTER COMPRESSOR AND LIMITER CIRCUITS

COMPRESSOR

The design described is intended for $\pm 9 \mathrm{~V}_{\mathrm{DC}}$ battery operation, and includes a third order high-pass filter for the elimination of subsonic noise and low frequency pops that would cause compandor overload or mistracking.
Figure 1 shows the connection of the SSM-2120 $\left(\mathrm{U}_{3}\right)$ VCA $_{1}$, rectifier, and control amplifier as a compressor. The VCA is connected in the feedback loop of the preamplifier U_{1} to control the gain. The compressor is designed for a $2: 1$ compression characteristic. If the input rises 6 dB , the output level will rise only 3 dB . The gain compression expression is:
Gain $_{\text {reduction ratio }}=\frac{R_{2} \cdot R_{4}}{R_{1} \cdot R_{3}}$
as long as the rectifier input currents are limited by R_{5}, R_{6} ($10 \mathrm{k} \Omega$), and the rectifier has a $=10 \mu \mathrm{~A}$ reference current. The SSM-2120 rectifier and VCA have a dynamic range in excess of 100 dB , resulting in exceptional tracking of the expander/compressor in the compandor system. High quality capacitors and resistors should be used to support the accuracy of the SSM2120 elements. The small-signal averaging time for a $10 \mu \mathrm{~F}$ integration capacitor is 25 ms . The attack time to 3 dB of final value is also about 26 ms and is almost independent of signal level increases for level changes in excess of +10 dB : The decay rate is 3 ms per dB . The high-pass filter keeps frequencies below 90 Hz from the input of the rectifier, reducing the low frequency distortion caused by the VCA control circuit.
DC and high-frequency feedback are provided for U, without sacrificing bandwidth or stability. The gain control is adjusted for OdBu output with -50 dBu applied to the microphone input terminals. The VCPA is signal inverting. Its output current is summed, along with the microphone signal current, at the (virtual ground) noninverting input of preamplifier SSM-2134, U_{1}. The $10 \mathrm{k} \Omega$ resistor at the input of the VCA limits the input
current, while the $2200 \mathrm{pF}, 47 \Omega$ network provides frequency compensation for the VCA, keeping it stable.
The $100 \mathrm{k} \Omega$ resistor from $V_{c c}$ to pin 10 of U_{3} establishes the operating current for the VCA. To minimize power supply current, all pins of the unused VCA should be returned to ground. The FEEDTHROUGH trim control is optional; and it can be used to minimize the VCA control voltage from feeding through to the output.

PROTECTION LIMITER

The limiter uses the second rectifier and control amplifier for separate and independent attack and decay times, along with a steeper gain reduction slope. The limiter threshold control sets the predetermined gain limiting point for high input signal levels. The gain reduction ratio is $4.6: 1$ as shown in Figure 1. Typically the onset of gain limiting should be set to +10 dBu at the output.
As in the compressor control circuit, the rectifier input current is limited by $R_{6}, 10 k \Omega$, and the rectifier referenced to $\sim 10 \mu \mathrm{~A}$ as well. Lower precision capacitors and resistors can be used here. Similar to the compressor, the attack time is much faster than the decay.
The VCA/Preamplifier was designed as a system. The VCA was put in the signal feedback loop of the preamplifier principally to prevent preamplifier overload, while keeping the overall noise low, and minimizing component count.

POWER SUPPLY

The application circuit requires two power supply voltages, $\pm 9 \mathrm{~V}_{\mathrm{DC}}$. The power consumption, for the circuit shown in Figure 1 , is less than 15 mA from each supply. The design described will operate properly with good dynamic range as the battery voltage begins to fall below the nominal $9 \mathrm{~V}_{\mathrm{DC}}$. It is assumed that two 9 volt batteries would be used, but for the smaller hand held wireless microphones a single 9 volt battery would be required. Figure 2 depicts a DC-to-DC converter that will supply the $-9 V_{D C}$

FIGURE 2: $D C$-to- $D C$ Converter for $+9 V_{D C}$ to $-9 V_{D C}$ at 15 mA

The converter circuit incorporates an astable oscillator running at 25 kHz . It is followed by a capacitor-coupled level shifter and rectifier with a filter. A SE/NE555 timer is used in the "output sink" mode for maximum efficiency, and longest battery life.

THE RECEIVER EXPANDER SECTION

EXPANDER CONTROL

In Figure 3; the control connection of the SSM-2120 (U_{3}) VCA, rectifier, and control amplifier is shown. The control circuit connection to the VCA produces a 1:2 gain expansion curve. If the input rises 3 dB , the output level will rise 6 dB . The gain expansion ratio expression is:
Gain $_{\text {expansion ratio }}=\frac{R_{2} \cdot R_{4}}{R_{1} \cdot R_{3}}$
The rectifier input current is limited by a $10 \mathrm{k} \Omega$ resistor connected to pin 9 of U_{3}, and the rectifier is biased at $10 \mu \mathrm{~A}$ current through a $1.5 \mathrm{M} \Omega$ resistor connected to V_{EE}. The SSM-2120 rectifier and VCA each have a 100 dB dynamic range, resulting in accurate tracking of the compressor.
As with the compressor/limiter circuit, the small-signal averaging time for a $10 \mu \mathrm{~F}$ integration capacitor is 26 ms . The attack time to 3 dB of final value is also about 26 ms and is almost independent of signal level increases for level changes in excess of +10 dB . The decay rate is 3 ms per dB .

The control circuit gain values, as shown above, provide a control voltage to the VCA section $+\mathrm{V}_{\mathrm{c}}$ control port [U_{3}, pin 5(19)], which result in a $1: 2$ signal expansion characteristic. The LEVEL control sets the initial overall gain value, and is adjustable from -10 dB to +20 dB .

EXPANDER AUDIO

Input amplifier U_{1} is a buffer between the input signal source (FM wireless receiver), the expander rectifier/control circuit, and the VCA audio signal input: If the signal source output impedance is below $100 \Omega, U_{1}$ can be omitted. The nominal source signal level should be -10 dBu : If signal gain or loss is required, U_{1} gain structure should be modified to provide -10 dBu to the VCA input current limiting resistor. The $37.4 \mathrm{k} \Omega$ resistor ahead of the VCA input [pin B,(16)] limits peak signal currents to avoid VCA distortion. The VCA signal input(s) are virtual ground current inputs. The $150 \mathrm{k} \Omega$ resistor connected to $V_{C C}$ and pin 10 of U_{3} sets the VCA input/output current compliance range. A VCA input shunting capacitor shown from U_{3} pin $8(16)$ to ground minimizes signal distortion and keeps the VCA stable by providing a high-frequency path to ground. The exact value is determined empirically. The output of the VCA feeds a virtual ground output amplifier, U_{2}. The overall audio path is signal noninverting, since the VCA is signal noninverting, and is combined with two inverting amplifiers U_{1}; and U_{2}.

FIGURE 3: Expander Circuit for Receiver Processor

TABLE 1: Circuit Performance Specifications

$A C$ coupling is not necessary but recommended. When the AC coupling is combined with feedthrough trimming, most of the unwanted sub-audible signals will be removed from the output signal. The unused portion of U_{3} (SSM-2120) can be utilized in an identical second channel expander. The supply voltage should be held at $\pm 15 \mathrm{VDC}$ to $\pm 18 \mathrm{VDC}$, to provide good dynamic range and circuit stability

APPLICATION NOTE 134

This application note describes an audio-signal activated microphone mixer, as shown, designed to accommodate eight input channels. The SSM-2120 Dynamic Range Processor is the nucleus of this design. The device includes two VCAs and two rectifier and control amplifier circuits. The application is designed for unattended microphone mixing functions, as would be used in a conference room that required sound reinforcement or conversation recording. The circuit provides automatic and transparent channel ON/OFF operation. The audio output automatically turns ON in less than 10 ms and back OFF after 2 to 4 seconds of no audio. Each channel incorporates independent and automatic operation, with ON threshold sensitivity and level adjustment (trim) controls.

THE MICROPHONE PREAMPLIFIER CIRCUIT

For optimum circuit performance, the nominal output level from the microphone preamplifier or other audio source(s) should be -10 dBu . The -10 dBu level allows the SSM-2120 to provide the widest dynamic range and lowest noise, while optimizing the headroom of the automatic switch and the microphone preamplifier.

THE AUDIO SWITCH

Each audio signal is switched ON and OFF by a VCA (voltage controlled amplifier) element. By controlling the turn-ON and turn-OFF ramp time, the VCA produces transient-free switching. No distortion or "pops" are introduced using this technique. The turn-ON is ramped from a maximum of 90 dB to 0 dB attenuation in approximately 30 ms . With the complete removal of the audio, the turn-OFF ramp of $\boldsymbol{\sim 1 0 0 \mathrm { ms }}$ will begin after approximately three (3) seconds.
The VCA's input is a current input, virtual ground node. The design shown in Figure 1 assumes that $\pm 15 \mathrm{~V}_{\mathrm{D}}$ c will power the system. With this supply voltage, the $37.4 \mathrm{k} \Omega$ input resistor(s) will keep the VCA operating at the optimum distortion and dynamic range. The $150 \mathrm{k} \Omega$ resistor connected from $V_{c c}$ $\left(+15 \mathrm{~V}_{\mathrm{DC}}\right)$ to the reference current pin 10 of the 2120 , sets the VCA bias operating point. The VCA's current output is then connected to a voltage by a transimpedance amplifier using a low noise SSM-2134 op amp. The VCA input(s) and output(s) are capacitively coupled to remove DC components from previous stages.

THE CONTROL CIRCUIT

The input signal is rectified and averaged before it is filtered by the integrator capacitor ($10 \mu \mathrm{~F}$ electrolytic). The small signal averaging time constant with this capacitor is approximately 60 ms . The attack time is 30 ms to 3 dB of the final level, and is nearly independent of the magnitude of level increase. The discharge time is controlled by the $3.3 \mathrm{M} \Omega$ resistor returned to $V_{E E}\left(-15 \mathrm{~V}_{\mathrm{DC}}\right)$, which also sets the rectifier reference current.
The control circuit amplifier has a voltage gain of 217. The inverting input is used to set the ON/OFF threshold point too, and allows for the ON Threshold level adjustment. The ON Threshold range is adjustable from -40 dBu to 0 dBu as referenced to the input of the VCA element. The control port +Vc of the VCA is used so that a negative control voltage applied will produce an attenuation effect. $\mathrm{R}_{4}(221 \Omega)$ and $\mathrm{R}_{5}(4.64 \mathrm{k} \Omega)$ attenuate the control voltage by a factor of 22, resulting in a maximum attenuation value of 90 dB with no audio signal present.
To minimize the effect of ON/OFF control voltage appearing in the output signal of the VCA, the Feedthrough null control circuit is recommended. It provides an external method for balancing the internal VCA currents and component values.

THE OUTPUT SECTION

The design incorporates a virtual ground current summing bus, that is fed by the individual mixing channel level control(s) and $10.0 \mathrm{k} \Omega$ resistor(s). The Level control(s) provides 21 dB attenuation range ($O \mathrm{~dB}$ to -21 dB), and is designed to balance the different inputs, but not turn them off fully. The $100 \mathrm{k} \Omega$ (linear taper) level control(s), for a linear rotation produces a logarithmic attenuation curve.
The virtual ground summing amplifier establishes half of the balanced output circuit, with another inverting amplifier completing the balanced output circuit. The circuit is able to drive 600Ω loads to +24 dBm levels with low distortion and high reliability:

FIGURE 1: Automatic Channel Activation Microphone Mixer Diagram Illustrates 8 Input Channels

TABLE 1: Circuit Performance Specifications

Input Voltage, without Preamplifier, (for +4 dBu Out)	-10dB
Input Impedance, Unbalanced	-1k Ω
Headroom (Nominal for -10dBu In and Out)	t) 32 dB
Turn ON Time (to 3dB of Final Value)	30 ms
Turn OFF Time (No Signal)	$\sim 3 \mathrm{sec}$
Turn OFF Ramp Time	100 ms
Feedthrough (Trimmed)	$>1 \mathrm{mV}$
ON/OFF Threshold Range (Nominal)	OdBu to -40dBu
ON/OFF Gain Extent	OdB to -90dB
Frequency Response for $\pm 0.1 \mathrm{~dB}$	20 Hz to 20 kHz
S/N Ratio @ OdB Gain	110dB
THD + Noise (from 20 Hz to 20kHz)	0.005\%
IMD (SMPTE 60 Hz and 4kHz, 4:1)	0.02\%
Output Voltage Slew Rate	$12 \mathrm{~V} / \mathrm{\mu s}$
Rated Output Level (600Ω Load)	+24dBu
Output Impedance	68Ω
Output Type	Balanced
Power Supply Requirements \pm	$\pm 15 \mathrm{~V}_{\text {DC }}$ Regulated

APPLICATION NOTE 135

The following application was written by Michael Morgan, a consultant to PMI with extensive experience in the design of professional audio equipment; including high-performance dynamic range processors. While currently a freelance consultant, Mr. Morgan spent nine years at Valley international as a principal designer of their products.
This application note describes the configuration of a low cost, high quality compressor with variable attack time and ratio control using the SSM-21 10 Level Detector and SSM-2014 VCA. The discussion begins with an overview of compressor/ limiter fundamentals, and is followed by a description of the unique attributes of the integrated circuits and their implications for the design engineer.

COMPRESSOR/LIMITER FUNDAMENTALS

The function of the audio compressor is, of course, to compress the dynamic range of the processed audio signal by altering the gain of its signal path in response to the relative level of the signal as compared to an arbitrary setpoint called the threshold, thus adding gain to low-level signals and reducing gain in the presence of high-level signals.
An audio compressor consists primarily of two functional sections, one of which derives a control signal by measuring and otherwise manipulating the audio signal to produce a voltage suitable for the second functional section, which is the gain control element. The gain control element is a device which can alter its attenuation, gain, or resistance in response to an external signal, such as a voltage or current.
The audio compressor differs from a similar device, called a limiter, in that a compressor exhibits a rotation point which is independent of its threshold setting. The rotation point is the locus on a graph of the compressor's transfer function at which the gain control element exhibits unity gain, and through which all lines derived from data describing the device's output level as a function of input level will pass. A limiter, in the purest sense, adds no gain and has no rotation point.
The compressor's ratio is defined as the increase in input level, in decibels; above the threshold which will result in an increase of output level equal to 1 dB , and is a function of control circuitry gain. For example, each increase of 1 dB in signal level above the threshold may cause a corresponding decrease in gain equal to 1 dB , thus keeping the output level constant for a ratio of infinity: 1 , or it may cause a $1 / 2 \mathrm{~dB}$ decrease in gain, thus allowing the output level to rise at a ratio of 2:1. A compressor may have a very high ratio, and conversely, a limiter may have a very low ratio.

SHAPING THE RESPONSE

Figures 1 a and 16 ill ustrate the transfer function of an ideal.compressor as the ratio is varied with a fixed threshold, and as the threshold is varied with a fixed ratio, respectively. Note that in both cases, the rotation point is easily identified at OdB. Note also that the compressor operates as a limiter when the threshold is equal to, or higher than, the rotation point. For this reason, the device described in this application note may be considered as a "compressor/limiter," but because it possesses a rotation point, we shall refer to the device as a compressor.

FIGURE 1a: Output vs Input Transfer Function of an Ideal Compressor

FIGURE 1b: Output vs. Input Transfer Function of an Ideal Compressor Having a Fixed Ratio Showing the Effect of Threshold

Audio compressors use two types of circuit topologies. In a feedback, or closed-loop configuration, the control signal is derived by measuring the output level of the gain control element. In a feedforward, or open-loop configuration, the control signal is derived by measuring the level of audio present at the input of the gain control device. Each topology has its typical advantages and disadvantages. The most common type of audio compressor uses the feedback topology. Among its advantages are: low parts cost; ease of configuration; ability to use simple, "linear" control circuitry and gain control elements. The disadvantages of the feedback topology are numerous: inability to realize continuously variable parameters accurately; heavy dependence upon circuit trimming to assure consistency in performance from unit to unit; tendency toward overshoot in either control signal or processed signal; virtual inability to configure circuitry for performing arbitrary dynamic functions, such as program control of release times, equalized sidechain functions, and interactive processing having more than one control function per gain control element.
The feedforward topology has long been considered by equipment designers to be the more versatile method of configuring audio dynamics processors. Among its advantages are: precise control of dynamics; ability to accurately and continuously vary processor parameters, such as ratio and attack-and-release time constants; easy circuit trimming for unit-to-unit consistency; possibility to realize arbitrary types of dynamics alteration; ease in configuration of interactive processing schemes using multiple control signals to operate a single gain control element; and relative freedom from control and signal overshoot. The disadvantages of feedforward topology have traditionally been: dependence upon relatively expensive and little understood logarithmic circuitry in configuration; difficulty in sourcing high-quality, low cost log/linear multipliers ($\mathrm{dB} / \mathrm{volt}$ VCAs); dependence upon expensive log/RMS detection schemes to achieve the required accuracy for wide range of control.

By using integrated building blocks, feedforward control technology can be realized by equipment designers by virtue of their ease of application and low cost. These readily available integrated circuits deliver performance equal to or surpassing complicated discrete circuits, and are more cost effective for general use by equipment manufacturers.

THE SSM-2110 MONOLITHIC LEVEL DETECTOR

The SSM-2110 level detector IC represents a significant advancement in low cost, high quality converter circuitry. The device greatly simplifies the design of feediorward dynamic processors since it produces an accurate output that is proportional to the log of the absolute value of its input, and the log of the rms value of its input; in addition to the corresponding linear values. Such versatility is unique among detector/converter configurations.

VARIABLE TIME INTEGRATOR

In this application, the SSM-2110 is used in the design of a feedforward compressor. The log of the absolute value of the input signal is extracted, then integrated by a $\mathrm{E} / \mathrm{x} \times \mathrm{C}$ circuit which corresponds roughly to an RC network in the linear domain (see Figure 2).

FIGURE 2: Simplified Schematic of a Variable Time Constant Log of Average Integrator Using the SSM-2110

The product of this operation is not, as one would expect, the average of the log of the absolute input value. During the integration process achieved by charging the integrator capacitor, C , the charging current is proportional to the antilog of the voltage appearing at the base of Q_{1}. Since the voltage at the base of Q_{1} represents the log of the absolute value of the input, the log and anti-log terms cancel, thus leaving C to charge as a linearintegrator with a current proportional to the absolute value of the input until the voltage across C approaches the voltage at the emitter of Q_{1}. In this manner, the order of the logging and averaging operations are reversed. This is a very important phenomenon which directly influences the audibility of the compression process, and will be discussed at length later.
The integration time of the circuit in Figure 2 is varied by changing the current through the collector of Q_{3}. This is accomplished by means of the multiplier circuit consisting of the operational amplifier, transistors Q_{2} and Q_{3}, and their associated resistors. Current $I_{\text {REF }}$ is forced to flow through the collector of Q_{2}. The $V_{b e}$ of Q_{2} is thus made to be proportional to the \log of t_{REF} by virtue of the silicon transistor's intrinsic logarithmic property, idealized in the equation:

$$
\begin{aligned}
& V_{b e}=k T / q \times \ln \left(1 l_{\mathrm{c}} I_{\mathrm{s}}\right) \text { where } \\
& \mathrm{k}=\text { Boltzman's constant }\left(1.38 \times 10^{-23 \mathrm{~J} / \mathrm{K})}\right. \\
& \mathrm{T}=\text { Temperature in Kelvins } \\
& \mathrm{q}=\text { Charge on an electron }\left(1.60 \times 10^{-19} \mathrm{C}\right) \\
& \mathrm{I}_{\mathrm{c}}=\text { Collector current } \\
& \mathrm{I}_{\mathrm{s}}=\text { Reverse saturation current (extrapolated as } \mathrm{V}_{\mathrm{b} \theta} \rightarrow 0 \text {) }
\end{aligned}
$$

When transistors Q_{2} and Q_{3} are closely matched, $V_{b e}$ of Q_{2}, which appears also at Q_{3} 's emitter, causes a current equal to I_{c} of Q_{2} to flow through the collector of Q_{3}. This transistor collector current, $\mathrm{L}_{\text {REF }}$, may be used to charge or discharge a capacitor, to cause a voltage drop across a resistor, or may be converted to a voltage at the output of an operational amplifier. The collector current of Q_{3} may be varied by applying a voltage at the bases of Q_{2} or Q_{3}, or both bases simultaneously. As a rule of thumb, at $25^{\circ} \mathrm{C}$ each 60 mV change in V_{b} will cause a corresponding ten-fold change in Q_{3} 's I_{c}. By using the "shorthand" log relationship for gain in which a ten-fold change in voltage (or current) equals 20 dB , we can say that the collector current of Q_{3} can be made to vary antilogarithmically at a rate of $1 \mathrm{~dB} / 3 \mathrm{mV}$ $(20 \mathrm{~dB} / 60 \mathrm{mV})$. In effect, the circuit generates a voltage at the emitter of Q_{2} which corresponds to the log of the input current, $I_{\text {REF }}$, adds the control voltage, then generates a current at the coilector of Q_{3} which is proportional to the antilog of the sum. Thus the portion of the circuit formed by the operational ampiifier, Q_{2}, Q_{3}, and their associated passive components form a two-quadrant multiplier whose output is a high compliance current sink.
A positive voltage applied to the base of Q_{2} will cause a corresponding decrease in Q_{3} 's collector current, while a positive voltage applied to the base of Q_{3} has the opposite effect, causing an increase in I_{c} of Q_{3}. Both bases may be controlled by bipolar voltages, but $l_{\text {REF }}$ must flow in the direction indicated by conventional current flow through the transistors (must be sourced from a voltage more positive than the noninverting input of the operational amplifier for NPN transistors).
In operation, varying the current which discharges C also causes a varying offset voltage at the collector of Q_{3} which equals the change in V_{b}, and must be compensated for in order to derive a useful control voltage. Figure 3 shows the response to a +10 volt pulse input having a repetition frequency of approximately 4 pps and a duty cycle of 50%. Note that the X-axis corresponds also to increasing integration time (decreasing i_{c}
of Q_{3}). The illustration is a composite of several sampled waveforms, thus, scalar references in the X-axis are valid only for each pulse.
As can be seen in Figure 3, in the log average detection mode, the response of the device to large level changes is relatively fast, while the last 50 to 100 mV of change occurs at the characteristic integration time determined by the status of the charge on the capacitor, C , as it is discharged by the collector current of Q_{3}. As the voltage across C approaches the voltage at the emitter of Q_{1}, the transistor behaves less as an antilog element, and more as a linear resistance proportional to $V_{b e} l_{\text {REF }}$
These attributes determine the detector circuit's response to complex waveforms, and directly affect the audibility of the compression process. Consider the following explanation: Humans respond to changes in audio signal level by perceiving volume as being proportional to the log of the acoustic power emitted by a source, thus the human listener perceives a source emitting 10 watts of "sound," (if the reader will permit such simplifications) to be roughly twice as loud as the same source emitting only 1 watt. This implies that one should be able to control audio levels logarithmically for a natural "sound" in the processed output. That is generally the case, but the principle does not extend, in a strict sense, to the control of a compressor.
If one accepts the premise that the most common uses of the audio compressor are to enhance the "loudness" of the processed material, or to "level" the apparent volume of the processed material, one should be aware of the effect of waveform complexity upon perceived louidness. A simple example is found in the case of a musician playing an instrument: when called upon to perform a solo, in order to "stand out" from the background music, the instrumentalist produces more complex sounds, in addition to producing sounds at a higher relative level. The increase in complexity provides a psychoacoustic "cue" which translates to the human listener as increased perceived loudness.

FIGURE 3: Output Voltage Response of the Variabie Time Constant Log of Average Integrator to a LF Square Wave Input

During the compression process, if the detector circuitry produces a signal which calls for more gain reduction in response to the added harmonics in a sound which cause an increase in complexity, the gain control element will comply, thus making a solo instrumental exit the compressor at a lower level, foiling the intent of the performer. This is precisely what happens when using RMS detection - the detector circuit (correctly) assesses the increased complexity as an increase in sound energy, and calls for gain reduction.

The log averaging detector is relatively insensitive to increases in waveform complexity, and "ignores" the loudness cue thus provided. As a result, a complex waveform exits the compressor at a slightly higher level than it would if under the control of an rms detector. This rather unique "quirk" found in the log averaging process allows a solo instrumental or vocal to stand out in the processed signal, thus preserving the intent of the performer.

As a log averaging detector, the SSM-2110 exhibits remarkably little departure from an idealized log curve representing its input level throughout the entire range of the adjustable integration time, and offers superior performance to the equipment designer in this type of application. In addition, at higher input levels, the device does not compress the waveform at its output, thus under-reading the input value. In fact, the detector exhibits a gentle and quite predictable deviation from log conformity at high input current levels which results in the addition of a linear error term. This causes a slight over-reading of the input, and is quite useful for aficionados of "soft knee" limiting, It is unlikely that any real compressor design would require so wide a range of operation that this deviation might pose a problem ($>60 \mathrm{~dB}$), but since the error term is so predictable and consistent, it can easily be corrected elsewhere in the control circuitry if necessary.

THE COMPRESSOR CONTROL CIRCUIT

Figure 4 illustrates a compressor control circuit incorporating the SSM-2110 as the detector element. Because the temperature compensation characteristics of the log recovery amplifier are not required in this application (control of a VCA having a complementary control sensitivity temperature coefficient) and to eliminate trimming of scale factor on a unit by unit basis, the log recovery amplifier is disabled by connecting its inputs to the IC's $V_{\text {REF }}$ output. This step is necessary for proper operation of the IC when the log recovery amplifier is not used. The log recovery transistor is not used since offset is not a real concern in this circuit configuration.
The amplifier in the audio signal path, A_{1}, should be of a high quality, low noise type such as the SSM-2134. The remaining amplifiers may be general purpose types, preferably having FET input stages to minimize the effects of input bias currents on the accuracy of the multiplier circuits.
Amplifier A_{2}, and the SSM-2210 matched transistor pair $Q_{1 a}$. $Q_{1 b}$ form the voltage-controlled current sink for the variable log averaging integrator. Amplifier A_{4} boosts the output of the integrator to a usable level by increasing the nominal $6 \mathrm{mV} / \mathrm{dB}$ scale factor of the signal at pin 2 to $1 \mathrm{~V} / 20 \mathrm{~dB}$, or 1 V per decade. An
offset corresponding to the change in voltage at pin 2 which results from varying the integration time is applied via R_{12} Variable resistor VR_{2} allows the adjustment of the compressor's rotation point, or that input level at which the output of A_{4} will be OV.
A pair of matching two-quadrant multipliers, which are configured using amplifiers A_{6} and A_{8} along with a four-transistor array Q_{2} (MAT-04), allow adjustment of the compressor's ratio and adds sufficient gain as a function of both the threshold setting from VR_{4} and A_{9}, and the ratio, as determined by VR_{3} and A_{5}, to maintain the compressor's rotation point. Amplifier A_{7} converts the current output of the ratio multiplier from $Q_{2 b}$ into a voltage which charges the holding capacitor C_{8} via Q_{3} a to a voltage corresponding to the amount of gain reduction required of the VCA. Amplifier A_{12} converts the current output of the maintenance gain multiplier from Q_{2} into a voltage corresponding to the quiescent gain required for the VCA to maintain the compressor rotation point, and adds or reduces gain at the VCA in response to the output gain control $V R_{7}$.
The release current sink is formed by amplifier A_{10}, and two sections of monolithic transistor array Q_{3}. Compensation for $V_{b e}$ of $Q_{3 a}$, and for the quiescent change of voltage across C_{B} caused by varying the release current through $Q_{3 c}$ are applied via R_{31} to A_{7}.
Amplifier A_{9} and diode D_{3} form a precision half-wave rectifier whose output is a positive voltage equal to the gain reduction signal. This point may also source a gain reduction indicator with intrinsic scaling of $+1 \mathrm{~V}=-20 \mathrm{~dB}$. Since metering is a matter of preference for the design engineer, no attempt has been made to include a gain reduction indicator as part of this circuit discussion.
Since it is possible for the inputs of both A_{6} and A_{8} to be negative voltages, it is wise to include germanium diodes D_{1} and D_{2} to prevent forward conduction of the internal base to emitter protective diodes in the MAT-04, thus eliminating the possibility of reverse leakage coupling between the multipliers. The existence of these diodes also prevents application of the MAT-04 as the charging transdiode $Q_{3 a}$, since a voltage more negative than that across C_{8} will frequently be present at the emitter of $Q_{3 a}$
Amplifier A_{13} outputs the algebraic sum of the various gain control signals for application to the compressor VCA section which will be described next.
Selection of the internal scale factor at $1 \mathrm{~V} /$ decade, and inclusion of the -7.5 V "math rail" are arbitrary choices made by the author in order to accommodate the use of the variable integrator, and to skew the control markings on the front panel controls, indicated by the enclosed names associated with those variable resistor potentiometers. Placing the rotation point, as determined by R_{2}, at the nominal operating line level, e.g., $+4 d B$, etc., minimizes the effects of errors caused by the uncompensated temperature coefficient of the ratio multiplier, and any minor deviations in log conformity inherent in the detector circuitry or VCA sections of the compressor.

NOTES
AU VAGIABLE RESISTORS ARE TRIMS, EXCEPT PANEL
CONTROLS WHICH ARE INDICATED BY AFUNCTION
CONTROLS WHCH ARE INDICATED BY AFUNCTION BOX
(1) MATH FAIL $(-7.5 \mathrm{~V}$
$\frac{1}{\nabla}$ AUDO GFOUND

1 CONTROLGROUND

FIGURE 5: VCA, Math Rail Regulator and Line Driver Schematic

THE VCA SECTION

Figure 5 shows the VCA section of the compressor using the SSM-2014. The device is configured as an "outboard QVCE" in accordance with the literature supplied with the IC. Amplifiers A_{14}, A_{15}, A_{16}, and A_{17} should be high quality, low noise op amps such as the SSM-2134. A_{14} and A_{15} provide the necessary feedback and output buffers for this particular circuit. Resistive voltage divider $\mathrm{R}_{45} / \mathrm{R}_{46}$ reduces the OVCE control port sensitivity to $+1 \mathrm{~V} / 20 \mathrm{~dB}$ attenuation to match the scale factor of the
control circuitry. Variable resistor R_{8} is adjusted for lowest distortion products, preferrably at unity gain with a high level input. R_{9} is adjusted by applying a low frequency ($<50 \mathrm{~Hz}$) signal at about $2 \mathrm{~V}_{\mathrm{p}}$ p to pin 11, and setting for least low frequency output at A_{15} under a no-input signal or shorted-input condition. The stability of both these trims will be a welcomed surprise to the designer used to dealing with log/antilog VCAs.

A "quasi-balanced" line driver, consisting of $\mathrm{A}_{16}, \mathrm{~A}_{17}$, and their associated passive components, completes the compressor
circuitry. The unit is capable of driving a 600Ω load at a sustained output level of +21 dBm , and has a maximum output of +26 dBm .

The SSM-2014 provides the designer a degree of flexibility in configuration which is not easily available using other VCA topologies. Chief among its attributes is the ability to select the operating bias current by applying current to a single port on the chip. This allows the user to select an operating point which is optimized for best noise performance vs. distortion for a given application
In considering the normal operation of the compressor, the most common scenario is that the unit is used to "track" instruments or vocals. Of secondary, but no less important, concern is use for compressing mixed program material to enhance apparent loudness. In both applications, the trade-off between the residual noise floor and distortion at high-signal levels, both a function of operating bias, is somewhat arbitrary. Since it is likely that the dynamic distortion inherent in the compression process in normal operation would be at least equally as noticeable as moderate distortion at high-signal levels, the "intermediate" bias setting as described in the literature accompanying the device was chosen. This places the device bias at approximately $300 \mu \mathrm{~A}$, with a value of $43 \mathrm{k} \Omega$ for R_{44}. As a result, the noise floor for the VCA circuit is -84 dB (ref. $0.775 \mathrm{~V}_{\text {RMS }}$) in a 20 kHz bandwidth at OdB gain. The 1 kHz THD + Noise measurements yielded figures consistent with the published data, and SMPTE IMD measurements disclosed worst-case distortion products in the 0.2% range, which is acceptable in all but the most critical applications. Should the designer wish to implement the sliding bias scheme, as described SSM-2014 data sheet, the output of the absolute value at pin 1 of the SSM-2110 (see Figure 4), or the rms computing loop (pin 5) may be used to drive a comparator with the appropriate time constants in order to switch to class A operation in the presence of high level inputs. In practice, this makes little difference in the transparency of the compressor in normal operation. Listening tests of the compressor demonstrated the smooth, precise control expected of the feedforward circuit topology. As the attack time (integration time) control is advanced from fast to slow settings, the low frequency content in mixed material becomes more solid and better defined, but the tendency to "squash" the lows is relatively absent at faster attack times as compared to other compressors having adjustable attack times with comparable settings.
The log averaging detector scheme really shines on vocals and horns, bringing a soloist "up-front" with moderate attack times. This is a noticeable difference when compared to any RMS-type compressor used for comparison in the listening tests.

ADJUSTING FOR BEST PERFORMANCE

As in any compressor or limiter whose ratio must be trimmed in its initial setup (see Figure 4, VR_{5}), the unit is sensitive to incorrect adjustment. One of the most distressing sounds which can be produced by a compressor is "over-compression," in which the control circuitry causes too much gain reduction at high ratios. For this reason, the compressor ratio trim should be set with the Threshold control at OdB (OV at the wiper of VR_{4}), and with an input of +20 dB , the trim should be adjusted so that with
the Attack, Releass, and Output gain controls centered, the maximum Ratlo sotting, fully clockwise, produces an output level equal to or slightly greater than the rotation point.
When laying out circuitry using the SSM-2014 and SSM-2110, care should be taken to keep traces to virtual grounds as short as possible, and a single point audio ground should be used. The control ground should connect to the audio ground at one point, pin 4 of the SSM-2110, and supply traces should be heavily decoupled with high quality capacitors. Traces carrying audio signal should be kept well away from control circuitry, and the detector IC and VCA should be located away from heat sources such as regulators or power supply transformers.
Since all parameter control is derived from DC levels produced by the front panel controls, high quality potentiometers need not be used. All the front panel control scales may be marked in equal intervals, and follow the antilog law, i.e., equal spacing per dB of gain or threshold setting, equal spacing per decade of attack and release times, etc. The sole exception is the ratio control, whose scale is skewed so that 2:1 appears near the middle of the control, as one normally would expect of a traditional feedback compressor.

The compressor control circuit described in this application note was configured using only four quad op amps in addition to the SSM-2110 and three matched transistor arrays. By providing the basic building blocks for an audio dynamic range processor in monolithic form, the SSM audio chip set greatly simplifies the implementation of an otherwise complex processor.

MEASURED PERFORMANCE:

| SMPTE IMD @ Unity Gain, 0dBv in | 0.009% |
| :--- | ---: | ---: |
| SMPTE IMD @ Unity Gain, +20dBv in | 0.11% |
| SMPTE IMD @ 20dB Gain Reduction, OdBv in | 0.06% |
| SMPTE IMD @ 20dB Gain Reduction, +20dBv in | 0.025% |
| Residual Noise and Hum @ Unity Gain, 20kHz BW | -84 dBv |
| Maximum Output Level into 600 , Balanced | +21 dBm |
| Maximum Input Level Before Clipping | +21 dBv |
| Usable Dynamic Range, Unweighted in 20kHz BW | 103 dB |
| Threshold Range Ref. Rotation Point | -40 to +20dB |
| Useful Range of Rotation on Point Adj. | -10 to +4dBv |
| Nominal Attack (Integration) Time Range | 0.02 to 200 ms |
| Nominal Range of Ratio Adjustment | $1.3: 1$ to 20:1 |
| Range of Release Time Adjustment | 0.05 to $5 \mathrm{~s} / 20 \mathrm{~dB}$ |
| Range of Output Gain Adjustment | -20 to +20dB |

NOTE: OdBv refers to $0.775 \mathrm{~V}_{\text {RMs }}$

PACKAGING

All PMI SSM Audio Products are offered in plastic DIP packages (P-suffix), and many new products are also available in a small outline surface mount package (S-suffix). Please refer to the individual data sheet for specific package options.

The 1990 PMI data book contains dimensions of the available packages.

ORDERING

SSM Audio Products are available from over 400 PMl stocking distributor locations worldwide. Contact your local PMI Sales Office or representative for ordering information.

SSM PART NUMBERING SYSTEM

SSM DEVICE MARKING

OTHER PMI PRODUCTS FOR AUDIO APPLICATIONS

Precision Monofithics Inc.

DIGITAL-TO-ANALOG CONVERTERS

Functional Dlagram

DAC-8228

Dual 8-Bit CMOS
D/A Converter with Voltage Output
Features

- Two 8-Bit DACs in a Single Chip
- Adjustment-Free Internal CMOS Amplifiers
- Fits AD/PM-7528 and AD/PM-7628 Sockets
- Single or Dual Supply Operation
- TTL Compatible Over Full VDD Range
- $5 \mu \mathrm{~s}$ Settling Time
- Fast Interface Timing $. \therefore t_{w}=50 \mathrm{~ns}$
- Improved Resistance to ESD
- Available in Small Outline Package
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the Extended Industrial Temperature Range

DAC-8426

Quad 8-Bit DAC
with 10 Volt Reference

Features

- Fits AD7226 Sockets
- $\pm 1 / 2$ LSB Maximum INL and DNL
- Space Saving 20-Pin 0.3" Wide DIP Package

DAC-8800
Octal 8-Bit CMOS TrimDAC ${ }^{\text {TM }}$

Features

- Excellent for General Purpose Voltage Adjustment/Level Setting Applications
- $\pm 1 / 2$ LSB Relative Accuracy
- TTL Compatible, Serial Inpút
- 4μ s Settling Time

DIGITAL-TO-ANALOG CONVERTERS

Functional Dlagram

Functional Diagram

Advance Information

DAC-8840
8-BIT Octal
4-Quadrant, CMOS
Multiplying TrimDAC ${ }^{T M}$

Features

- Replaces 8 Potentiometers
- 0.5% Total Harmonic Distortion
- 1 MHz 4 -Quadrant Multiplying Bandwidth
- No Signal Inversion
- Eight Individual Gain-Controlled Channels
- 3-Wire Serial Input
- Low Cost
- ± 3 Volt Minimum Output Swing
- Mid-Scale Preset, $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$
- 24-Pin 0.3" DIP and SOL-24 Packages

DAC-8043

12-Bit Serial Input
Multiplying CMOS D/A Converter in an 8-Pin Mini-DIP

Features

- 12-Bit Accuracy in an 8-Pin Mini-DIP
- Fast Serial Data Input
- Low $\pm 1 / 2$ LSB Max INL and DNL
- Max Gain Error: ± 1 LSB
- Low 5ppm $/{ }^{\circ} \mathrm{C}$ Max Tempco
- ESD Resistant
- Low Cost
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the Extended Industrial Temperature Range

DAC-8143
12-Bit Serial Daisy-Chain CMOS D/A Converter

Features

- Fast; Flexible, Microprocessor Interfacing in Serially-Controlled Systems
- Buffered Digital Output-Pin for Daisy-Chaining Multiple DACs
- Minimizes Address-Decoding in Multiple DAC Systems - Three Wire Interface for Any Number of DACs

One Data Line
One CLK Line
One Load Line

DIGITAL-TO-ANALOG CONVERTER

 SELECTION GUIDEPMI offers a complete line of digital-to-analog converters (DACs), all of which are guaranteed to be monotonic over their operating temperature
ranges, and some which have become industry standards. The D/A converters have been arranged in the selector guide by resolution. 6-bit through 16-bit devices are sorted by number of D/A converters per package.

D/A CONVERTERS

Product	Resolution (Bits)	Settling Time	DACs/ Package	DAC Output	Power Dissipation (mW)	Digital Interface
*DAC-01	6	$3 \mu \mathrm{~s}$	1	V	250	6-Bit
PM-7224	8	$5 \mu \mathrm{~s}$	1	V	60	Latched 8-Bit
PM-7524	- 8	200 ns	1	1	5	Latched 2-Digit BCD
DAC-08	- 8	135ns	1	1	136	8-Bit
DAC-108	8	20 ns	1	1	136	8-Bit
DAC-888	8	400 ns	1	1	190	Latched 8-Bit
*DAC-1408A	8	250 ns	1	I	265	8-Bit
*DAC-1508A	8	250ns	1	1	265	8-Bit
DAC-20	8	150ns	1	1	194	2-Digit BCD
DAC-8228	8	$5 \mu \mathrm{~s}$	2	V	165	Latched 8-Bit
DAC-8229	8	$5 \mu \mathrm{~s}$	2	V	165	Latched 8-Bit
PM-7528	8	350 ns	2	1	5	Latched 8-Bit
PM-7628	8	200ns	2	1	5	Latched 8-Bit
DAC-8408	8	250 ns	4	1	5	8-Bit w/ Readback
PM-7226	8	$5 \mu \mathrm{~s}$	4	V	250	Latched 8-Bit
DAC-8426	8	$5 \mu \mathrm{~s}$	4	V	250	Latched 8-Bit
PM-7228	8	$5 \mu \mathrm{~s}$	8	V	430	Latched 8-Bit
DAC-8800	8	$2 \mu \mathrm{~s}$	8	V	25	Latched Serial
DAC-8840	8	$4 \mu \mathrm{~s}$	8	V	150	Latched Serial

[^9]DIGITAL-TO-ANALOG CONVERTER SELECTION GUIDE

D/A CONVERTERS

Product	Resolution (Bits)	Settling Time	DACs/ Package	DAC Output	Power Dissipation (mW)	Dlgital Interface
PM-7533	10	600 ns	1	1	30	10-Bit
*DAC-02	$10+$ Sign	$2 \mu \mathrm{~s}$	1	V	350	10-Bit
*DAC-03	$10+$ Sign	$2 \mu s$	1	V	350	$10-\mathrm{Bit}$
*DAC-05	$10+$ Sign	$2 \mu \mathrm{~s}$	1	V	350	10-Bit
DAC-06	$10+$ Sign	$1.5 \mu \mathrm{~s}$	1	V	300	10-Bit
DAC-10	10	150 ns	1	1	285	10-Bit
DAC-86	10	500 ns	1	1	207	Chord + Step
DAC-88	10	500ns	1	1	262	Chord + Step, μ Law
DAC-89	10	500 ns	1	1	263	Chord + Step, A Law
DAC-100	10	300 ns	1	1	250	10-Bit
DAC-210	$10+$ Sign	$1.5 \mu \mathrm{~s}$	1	V	315	10-Bit + Sign
DAC-401	10	$2 \mathrm{~ns}, 400 \mathrm{MHz}$	1	v	450	Latched 10-Bit
DAC-8012	12	$1 \mu \mathrm{~s}$	1	1	10	12-Bit w/ Readback
DAC-8043	12	$1 \mu \mathrm{~s}$	1	1	10	Latched Serial Daisy
DAC-8143	12	$1 \mu \mathrm{~s}$	1	1.	10	Latched Serial Daisy
PM-7541	12	$1 \mu \mathrm{~s}$	1	1	10	12-Bit
PM-7541A	12	$1 \mu \mathrm{~s}$	1	1	10	12-Bit
PM-7542	12	$1 \mu \mathrm{~s}$	1 .	1	10	Latched 4-Bit
PM-7543	12	$1 \mu \mathrm{~s}$	1	1	10	Latched Serial
PM-7545	12	$1 \mu \mathrm{~s}$	1	1	10	Latched 12-Bit
PM-7548	12	$1 \mu \mathrm{~s}$	1	1	10	Latched 8-Bit
PM-7645	12	$1 \mu \mathrm{~s}$	1	1	10	Latched 12-Bit
DAC-312	12	500 ns	1	1	305	12-Bit
PM-562	12	$1.5 \mu \mathrm{~s}$	1	1	465	12-Bit
DAC-8212	12	$1 \mu \mathrm{~s}$	2	1	10	Latched 12-8it
DAC-8221	12	$1 \mu \mathrm{~s}$	2	1	10	Latched 12-Bit
DAC-8222	12	$1 \mu \mathrm{~s}$	2	1	10	12-Bit Double-Buffered
DAC-8248	12	$1 \mu \mathrm{~s}$	2	1	10	8-Bit Double-Buffered
DAC-8412	12	$20 \mu \mathrm{~s}$	4	v	180	12-Bit w/ Readback
DAC-16 ${ }^{\dagger}$	16	650 ns	1	v	200	16-Bit

[^10]
OPERATIONAL AMPLIFIERS

Precision, Low Noise
 OP-27, OP-270, OP-470

	OP-27 Single	$\begin{aligned} & \text { OP-270 } \\ & \text { Dual } \end{aligned}$	$\begin{aligned} & \text { OP-470 } \\ & \text { Quad } \end{aligned}$
Extremely Low Noise (@ kHz)	$3.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$5 \mathrm{VV} / \sqrt{\mathrm{Hz}}$	$5 \mathrm{VV} / \sqrt{\mathrm{Hz}}$
Very Low Offset Voltage	$25 \mu \mathrm{~V}$	$75 \mu \mathrm{~V}$	$400 \mu \mathrm{~V}$
Slew Rate	$2.8 \mathrm{~V} / \mu \mathrm{s}$	2:4V/us	2V/us
Gain-Bandwidth	8 MHz	5 MHz	6 MHz

The OP-27, OP-270 (dual), and OP-470 (quad) feature low noise with excellent DC performance. Each device is unity-gain stable. Supply current for the OP-270 and OP-470 is unusually low for low noise amplifiers, running at 2.25 mA typically per amplifier. The excellent AC matching between amplitiers makes them ideal for matched gain stages, audio amplifiers, and active filters. The low offset, high CMR and PSR are especially useful in low noise instrumentation amplifiers.

Precision, Low Noise, Fast
OP-37, OP-271, OP-471

	OP-37 Single	OP-271 Dual	OP-471 Quad
High Gain-Bandwidth	63 MHz	5 MHz	6 MHz
	($\mathrm{V}_{\mathrm{VCL}} \geq 5$)		
Excellent Slew Rate	$17 \mathrm{~V} / \mathrm{ss}$	7V/us	$8 \mathrm{~V} / \mathrm{\mu s}$
Low Noise (@ 1kHz)	$3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
Low Offset Voltage	$25 \mu \mathrm{~V}$	$200 \mu \mathrm{~V}$	$800 \mu \mathrm{~V}$

The OP-37 has very good gain-bandwidth performance and is stable for gains of five and above. The OP-271 (dual) and OP-471 (quad) are unity-gain stable.

Wide Bandwidth, Low Noise, Precision OP-61

The OP-61 offers an outstanding combination of high speed and low noise with DC precision to meet the demands of today's high performance equipment.
A very high gain-bandwidth product of $200 \mathrm{MHz}\left(\mathrm{A}_{\text {vCL }} \geq 10\right)$ and a fast $45 \mathrm{~V} / \mu \mathrm{s}$ slew rate are achieved with only 7.5 mA supply current.
The OP-61 is available in 8-pin plastic DIP and 8-pin small outline (SO) packages, with guaranteed operation over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
Also available in MIL temp and LCC packages.

OPERATIONAL AMPLIFIERS

Dual High-Speed JFET Input OP-249

This high-precision dual features high slew rate, excellent DC performance and very low cost. Specifications include a maximum long term limit for input offset voltage, a first for JFET input amplifiers.
The OP-249 is available in an 8-pin plastic DIP with guaranteed operation over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. Also available in military versions.

Matched Monolithic Quad NPN Transistor MAT-04

The MAT-04 is a quad monolithic NPN transistor that offers excellent. parametric matching for non-linear circuit applications. Performance characteristics of the MAT-04 include high gain of 400 (Min) over a wide range of collector current; low noise ($2.5 \mathrm{nV} / \sqrt{\mathrm{Hz}} \mathrm{Max}$ at $100 \mathrm{~Hz}, \mathrm{I}_{\mathrm{Cz}}=1 \mathrm{~mA}$); and excellent logarithmic conformance. The MAT-04 also features a low offset voltage of $200 \mu \mathrm{~V}$ and tight current gain matching to within 2%.
The MAT-04 is an ideal choice in applications where low noise and high gain are required.

Other Products from PMI:

- High-Speed Operational Amplifiers
- Low Power/Micropower Operational Amplifiers
- High Accuracy Instrumentation Amplifiers
- High-Speed Buffers
- Data Conversion Products
- Voltage Comparators
- Precision Voltage References
- Analog Switches and Multiplexers
- Sample-and-Hold Amplifiers
- Precision Matched Transistors
- Communication Products

HIGHLIGHTS FROM PMI'S 1990 DATA BOOK

Over 1,800 Pages Of Products For The Analog Designer!

Covers instrumentations, data acquisition, process control, telecom and audio applications.	Table of Contents	1a
	- Applications Subject Index	1 b
A comprehensive directory of	Ordering Information	2
direct and functional equivalent products.	Product Assurance Program	3
	- Industry Cross Reference	4
	- Operational Amplifiers/Buffers	5
	Instrumentation Amplifiers	6
Contains definitions, selection principles, $\mathrm{AC} \& \mathrm{DC}$ considerations,	SSM Audio Products	7
and Selection Guide based on 12 parameters.	Voltage Comparators	8
	Matched Transistors	9
	Voltage References	10
	_ Digital-to-Analog Converters	11
Contains definitions and DC error calculations for standard	Analog-to-Digital Converters	12
inverting and noninverting	Analog Switches/Multiplexers	13
	Sample-and-Hold Amplifiers/Special Functions	14
	Communications Products	15
	Package Information	16
	Sales Offices, Representatives and Distributors	17

For your copy, contact your local PMI sales office, representative, or distributor. Also, ask about PMI's Precision Decisions catalog-on-a-disk.

Copyright© 1990
Precision Monolithics Inc.
PMI reserves the right to make changes to the product in this data book to improve performance, reliability, or manufacturability. Consequently, contact PMI for the latest available specifications and performance data.
Although every effort has been made to ensure accuracy of the information contained in this data book, PMI assumes no responsibility for inadvertent errors.
PMI assumes no responsibility for the use of any circuits described herein and makes no representation that they are free of patent infringement.

The products in this catalog may be manufactured under one or more of the following patents: $4,055,773 ; 4,056,740 ; 4,068,254 ; 4,088,905$; $4,092,639 ; 4,109,215 ; 4,118,699 ; 4,131,884 ; 4,138,671 ; 4,142,117$; 4,168,528; 4,210,830; 4,228,367; 4,260,911; 4,272,656; 4,285,051; 4,333,047; 4,340,851;4,374,335; 4,404,529; 4,444,309; 4,449,067; $4,454,413 ; 4,471,320 ; 4,471,321 ; 4,503,381 ; 4,538,115 ; 4,542,349 ;$ $4,560,947 ; 4,572,975 ; 4,583,051 ; 4,633,165 ; 4,675,561 ; 4,677,369 ;$ $4,683,423 ; 4,687,984 ; 4,737,281 ; 4,757,274 ;$ other patents pending.

Precision Monolithics Inc.
Life Support and Nuclear Facility Applications Policy
As a general policy, Precision Monolithics Inc. (PMI) does not recommend the use of any of its products in (a) life support (i.e., critical medical) applications where failure or malfunction of the PMI product can be reasonably expected to cause failure of the life support device or to significantly affect its safety or effectiveness, or (b) any nuclear facility applications. PMI will not knowingly sell its products for use in such applications unless it receives in writing assurances satisfactory to PMI that (a) the risks of injury or damage have been minimized (b) the customer assumes all such risks, and (c) the liability of PMI is adequately protected under the circumstances.

Following is the most current list of PMI's trade marks, registered trade marks, and service marks.

PMD

Audio Silicon Specialists ${ }^{\text {M }}$
COMDAC ${ }^{\circ}$
TRICEPSM
TrimDAC ${ }^{\text {TM }}$

Publication Team

Project Coordinator:	Kaz Hamano	Technical Coordinator:	Dan Parks	
Graphic Production/Coordination:	Judy Sharp	Technical Contribution:	Gary Adrig	Dan Musso
Cover Design:	Scot Realth			Derek Bowers
Technical Editor:	Elizabeth Brown		Arman Naghavi	
Project Production Team:	Deitrich Baltzer			Pate Cate

Corporate Headquarters

1500 Space Park Drive
P.O. Box 58020

Santa Clara, CA 95052-8020
TEL 800-843-1515
FAX 408-727-1550

European

Headquarters

Bourns AG
Zugerstrasse 74
6340 Baar
Switzerland
TEL 042-33 3333
TLX 868722
FAX 042-31 9017

Asia Pacific

Headquarters
Bourns Asia Pacific Inc.
\#09-01A SLF Building
Singapore 1130
TEL 653534118
FAX 653533381

Japan

Nippon PMI Corporation
2nd Floor, Nichibei Time 24 Building 35 Tansu-cho
Shinjuku-ku, Tokyo
162 Japan

Precision Monolithics Inc. A Bourns Company

TEL 813 260-14 11
TLX 78127632
FAX 81-32 607100

[^0]: * Advance Information

[^1]: *RCD Components, Inc. Part Number LP1/4, 3301 Bedford Street, Manchester, NH U.S.A., (603) 669-0054, Telex 943512

[^2]: Manufactured under the following U.S. Patents: 4,471,320 and 4, 560, 947. Other Patents pending. Mask work protected under the Semiconductor Chip Protection Act of 1983.

[^3]: Thls advance product informatlon describes a product in development at the time of this printing. Final specificatlons may vary, Please contact local salles office or distributor for final data sheet.

[^4]: Protected under U.S. Patents \#4,471,320 and \#4,560,947, Other Patent Pending. The SSM-2120/SSM-2122 Is mask work protected under the Semiconductor Chip Protection Act of 1983.

[^5]: *Dolby Is a trademark of Dolby Laboratories Licensing Corporation, San Francisco, Callfornia

[^6]: The SSM-2016 has been granted mask work protection under the Semiconductor Chip Protection Act of 1983.

[^7]: Logic " 0 " $\leq 0.8 \mathrm{~V}$
 Logic "1" $\geq 2.0 \mathrm{~V}$

[^8]: *PSpice is a registered trademark of MicroSim Corporation.
 *HSPICE is a tradmark of Meta-Software, Inc.

[^9]: *Not recommended for new designs.

[^10]: * Not recommended for new designs.
 \dagger Advance information - check factory for availability.

